
DEEP NEURAL NETWORKS FOR 

BIOMETRIC IDENTIFICATION BASED ON 

NON-INTRUSIVE ECG ACQUISITIONS 
JOÃO RIBEIRO PINTO, JAIME S. CARDOSO, ANDRÉ LOURENÇO 

 

 

Abstract 

The electrocardiogram has gained traction as a biometric trait due to its outstanding 

combination of universality, permanence, and measurability, with a hidden nature that makes 

it harder to steal or counterfeit. The state-of-the-art mostly consists of pipeline algorithms, 

composed of separate stages of denoising, segmentation, feature extraction, and decision. 

However, Convolutional Neural Networks (CNNs), possess the tools to integrate all phases of 

processing, from acquisition to decision, in a single model. This integration replaces separate, 

step-by-step tuning with an holistic optimisation process, synergically adapting the model to 

attain the best performance possible. In this chapter, we introduce and explore the capabilities 

of convolutional neural networks for biometric identification using non-intrusive ECG signal 

acquisitions, and propose a CNN architecture for the complete integration of traditional 

pipeline stages in a single accurate and robust model. The method was evaluated on the 

highly complete and challenging UofTDB collection, and has shown promising results on 

identification tasks when compared with recent and successful state-of-the-art methods. 

 

1  Introduction 

The benefits of biometric systems are well-known: they avoid the risk of loss, copy, or theft 

of credentials by using the user itself as the credential, and make the user authenticable at all 

times, without the need to carry physical credentials or remember codes or passwords (Jain et 

al. 2011, Kaur et al. 2014). The merit of biometrics has been increasingly recognised in all 

fields of industry, as biometrics quickly replace traditional authentication methods in 

smartphones, computers, building entrances, and airports. 

Biometric recognition is largely dominated by four traits: face, iris, fingerprints, and voice. 

These, in 2015, represented 75% of the biometrics market (Mani and Nadeski 2015), and 

their state of development is significantly more advanced than other traits such as retinal 

scans, signature, gait, or keystroke (Adeoye 2010, Chauhan et al. 2010). Nevertheless, the 

techniques for circumvention of such systems, based on recordings of the traits, are 

constantly evolving (Belgacem et al. 2012, Fratini et al. 2015), and require the system to 

become more sophisticated to ensure the liveness of the acquired trait. 

Medical or physiological biometrics, such as the electrocardiogram (ECG), have inherent 

liveness information. The electrocardiogram is the most promising, on par with the most 
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common traits (Kaur et al. 2014), due to its combination of universality, permanence, and 

measurability (Li and Narayanan 2010, Agrafioti et al. 2012), along with increased 

acceptability and comfort when acquired on non-intrusive off-the-person settings, on the 

hands of the subjects using ungelled electrodes. Furthermore, there are very few and recent 

circumvention techniques for ECG biometrics (Eberz et al. 2017), and present many 

constraints (like continued contact with both hands of the subject) that reduce the likelihood 

of success. 

The algorithms for biometric recognition based on electrocardiographic signals have the goal 

to output an identity or match score, based on a given short segment of ECG and the data 

stored by the biometric system (Bolle et al. 2004, Jain et al. 2011). The existing algorithms 

can generally be divided into four stages, according to their purpose, as illustrated in Fig. 1. 

First, we have the denoising stage, that generally consists of Butterworth filters, line-fitting 

smoothing procedures, and other preprocessing methods that aim towards the attenuation of 

noise in the received signal. Then, we have the preparation stage, where minor preparations 

of the denoised signal are applied to ease the extraction of meaningful features. These 

preparation usually include fiducial detection (the most frequent is R-peak localisation), 

heartbeat segmentation, time and amplitude normalisation, and outlier removal (Odinaka et 

al. 2010, Lourenço et al. 2011, Pinto et al. 2017). The processes included in the denoising and 

signal preparation have also usually been grouped in one larger stage, designated as signal 

preprocessing stage (Bolle et al. 2004, Jain et al. 2011). However, as the field evolves 

towards more comfortable and acceptable acquisitions, the importance and complexity of 

such processes increases to face the growing influence of noise and variability.    

The third stage is feature extraction, that aims to enhance the information that is linked with 

the identity and individual characteristics of each individual, and remove useless information 

that can harm the process of recognition. The fourth and last stage is decision, where a 

classifier can be used to compare all stored data templates to the received signal and return an 

identity (identification), or to compare the received signal with the claimed identity’s 

template and, based on a measure of similarity or dissimilarity, return a decision of 

acceptance or rejection (authentication). 

 

Figure 1. Schema of the typical structure of an ECG-based biometric system, with emphasis for the 

four stages of an ECG biometric recognition algorithm. 



 

 

Deep learning has multiple times shown its potential to integrate different functionalities into 

a single model (LeCun et al. 2015). The flexibility of the convolutional and fully-connected 

layers, together with the techniques of regularisation and data augmentation make it able to 

autonomously learn the most fitted features for the classification task at hand, while keeping 

the ability to generalise and be robust against high variability and noise dominance over the 

signal (LeCun et al. 2015, Zhang et al. 2017). The integration of all the often separate stages 

into a single, unified model, means that the optimisation is not individual and partitioned but, 

instead, holistic and synergic: all stages are optimised as a whole towards the best model 

possible. 

Here, we propose a novel algorithm for biometric recognition based on convolutional neural 

networks (CNNs). The proposed method was evaluated on the most complete and 

challenging off-the-person collection currently available, and replaces the entire traditional 

pipeline stages from denoising to decision. Furthermore, we studied how the progressive 

integration of traditional stages on a CNN can benefit the process of biometric identification 

using ECG signals acquired in non-intrusive settings, and the algorithm previously proposed 

in Pinto et al. (2017) was improved and adapted to be used as the baseline algorithm for 

direct comparison. 

Besides this introduction, this chapter presents a brief but comprehensive overview of the 

state-of-the-art in ECG-based biometrics and some recent applications of deep learning in 

biometrics and with signal acquisitions, in section 2; a description of the proposed 

convolutional neural network architecture and its constituent parts, regularisation and data 

augmentation techniques, in section 3; the baseline algorithm adapted from Pinto et al. 

(2017), in section 4; the results of the evaluation of the proposed architecture, the study of 

progressive integration of pipeline stages, and the comparison with the baseline and state-of-

the-art algorithms, in section 5; and final remarks and conclusions on the work performed and 

results obtained, in section 6. 

 

2  State-of-the-Art Overview 

The research topic of ECG-based biometrics is fairly recent. Despite being prophesied by 

Forsen et al. (1977), the first studies specifically aiming to use the ECG for individual 

recognition were only published by the start of the millenium (Biel et al. 1999, Kyoso et al. 

2000), after important studies on the inter and intrasubject variability of the signal (Hoekema 

et al. 1999, Schijvenaars 2000). On the other hand, deep learning methodologies, specifically 

Convolutional Neural Networks, were first used by LeCun et al. (1998), but have only 

become trendy in the last years, due to exceptional computational requirements that could 

only be efficiently met with recent technology. Below, we present a more detailed overview 

of both the state-of-the-art in ECG biometrics and the use of deep learning for biometrics and 

signal analysis. 

 



 

2.1. ECG-Based Biometrics 

One of the most successful algorithms is that of Plataniotis et al. (2006) and Agrafioti and 

Hatzinakos (2008), that extracted normalised autocorrelation features from fixed-length ECG 

segments, and applied dimensionality reduction with linear discriminant analysis. Without 

requiring fiducial detection, they used a nearest neighbour classifier for classification, 

achieving 100% IDR in a dataset with 27 subjects. The algorithm was then adapted for 

continuous identification by Matta et al. (2011). Odinaka et al. (2010) used Log-STFT (Short-

Time Fourier Transform) Spectrograms of heartbeat segments to train Gaussian Mixture 

Models, and log-likelihood maximisation was used to output an identity, attaining 99% 

identification rate (IDR or accuracy) in a private dataset with 269 subjects. 

Wang et al. (2013) used representation elements from max-pooling of sparse coding 

coefficients of ECG segments without denoising, fed to a nearest neighbour classifier, 

obtaining 99.5% IDR with 100 subjects of the public PTB database. Brás and Pinho (2015) 

also evaluated their algorithm on the PTB database. They proposed feature extraction using 

Kolmogorov-based normalised relative compression, from unsegmented signals denoised 

using a combination of moving average, notch, and lowpass filters, and reported 99.9% IDR 

with 52 subjects. 

More recently, Carreiras et al. (2016) used heartbeats segmented after denoising with a 5-20 

Hz bandpass filter, and obtained 84.4% IDR with 618 subjects using a nearest neighbour 

classifier. Tan et al. (2017) fed temporal, amplitude, and angle fiducials into a Random Forest 

(RF) classifier, and used Discrete Wavelet Transform (DWT) coefficients as features on a 

nearest neighbour classifier using wavelet distance, and fused the two classifiers at the score 

level. It resulted in 99.5% IDR with recordings of 184 subjects gathered from several public 

datasets. 

The performance results reported by these works is quite encouraging, with identification 

rates equal or very near 100%. Nevertheless, it is important to recall the nature of the signal 

acquisitions used: these early initiatives focused mainly on on-the-person ECG acquisitions: 

intrusive recordings using several gelled electrodes, characterised by high signal quality and 

low influence of noise.   

The performance degrades when we consider more acceptable and comfortable acquisitions, 

on non-intrusive off-the-person settings. These are characterised by the use of few ungelled 

electrodes placed on the hands or fingers, with increased influence of noise due to free 

movements and variability due to unstable electrode placement and contact with the skin.  

Using off-the-person signals, Lourenço et al. (2011) proposed the use of averaged heartbeats, 

passed through processes of filtering, time and amplitude normalisation. Using a nearest 

neighbour classifier in identification tasks, the method attained 94.3% IDR with 16 subjects. 

More recently, Pinto et al. (2017) selected Discrete Cosine Transform (DCT) and Haar 

coefficients from ensemble average heartbeats, extracted from five-second segments denoised 

by a combination of Savitzky-Golay with a moving average filter. With data acquired from 



 

 

six drivers, during normal unconstrained driving activity using a conductive leather steering 

wheel cover, the method attained 94.9% IDR.  

Wieclaw et al (2017) proposed the use of a multilayer perceptron (MLP) on individual 

heartbeats extracted from segments denoised using a bandpass filter, including methods for 

the rejection of noisier heartbeats, achieving 88.97% IDR with ECG signals acquired in off-

the-person settings from 18 subjects. These last three works illustrate the significantly 

negative effect of higher noise and variability of off-the-person acquisitions on the 

performance of ECG biometric algorithms, despite the relatively small number of subjects in 

the datasets used. 

As for the trending deep learning methodologies, few have yet ventured into their application 

on ECG biometrics, and they are yet to be explored to the fullest extent of their potential. 

Zhang et al. (2017) aimed to replace only the classification stage with a convolutional neural 

network that separately receives and processes (on the convolutional layers) the 

autocorrelation of the approximation and detail coefficient sets of the wavelet transform of 

two-second ECG segments, after component selection. The information on those levels is 

only unified at the classification level (on the fully-connected layers), and resulted in an 

average 93.5% accuracy for separate datasets with 18-47 subjects. Eduardo et al. (2017) used 

autoencoders to replace only the denoising and feature extraction stages of the biometric 

system. The autoencoders learned lower-dimensional representations of heartbeats, used on a 

k-Nearest-Neighbours classifier, which, for a dataset with 706 subjects in medical settings, 

rendered 0.91% identification error. 

Salloum and Kuo (2017) used Recurrent Neural Networks (RNN) with Long Short-Term 

Memory (LSTM) and Gated Recurrent Units (GRU) with a sequence of segmented 

heartbeats, and obtained 100% IDR with 90 subjects of the public ECG-ID database. At last, 

Luz et al. (2018) proposed the substitution of the feature extraction and classification stages, 

through the fusion of two separate convolutional networks at the score level, one receiving 

segmented heartbeats and the other receiving the heartbeats’ spectrograms. Tested for 

authentication tasks, their method achieved 14.27% Equal Error Rate (EER) on the UofTDB 

database.  

Unlike these recent works, our aim is to more completely take advantage of the potential of 

deep learning: to integrate all stages (denoising, preparation, feature extraction, and 

classification) of processing into a convolutional neural network, to use it for biometric 

identification purposes, and to achieve competitive performance on the largest and most 

complete public dataset of off-the-person signals acquired from 1019 individuals. 

2.2. Deep Learning for Signals and Biometrics 

Besides the recent efforts towards deep ECG-based biometric systems, deep learning has 

been extensively explored for biometric applications with other traits, and for various other 

purposes. In the realm of biometric recognition, Taigman et al. (2014) have proposed the 

well-known DeepFace algorithm for face biometric authentication. Trained with a large 



 

dataset with more than four thousand identities, the algorithm was able to learn 

representations that proved robust to unconstrained settings, even when transferred to 

different datasets. Raja et al. (2015) explored the extraction of deep sparse filtering features, 

that proved robust for biometric recognition based on unconstrained smartphone iris 

photographs. Nogueira et al. (2016) proposed the use of a CNN for liveness detection (the 

important process of determining if the measured trait is real or fake) in fingerprint biometric 

recognition, and was awarded for the high accuracy achieved. 

Deep learning has also been used with signal acquisitions for diverse purposes, resulting in 

significant performance benefits. Rajpurkar et al. (2017) proposed a 34-layer Convolutional 

Neural Network for detection of several types of arrhythmias on single-lead ECG 

acquisitions, and reported performance superior to that of professional cardiologists. Hannun 

et al. (2014) aimed to discard overly engineered processing pipelines for speech recognition, 

instead using a much simpler Recurrent Neural Network (RNN), that proved robust against 

common problems like speaker variation and background noise, without needing to be 

personally tuned for that purpose. Um et al. (2017) explored CNNs for classification of the 

motor state of Parkinson’s disease patients, along with several unidimensional data 

augmentation techniques to work around dataset size limitations, predominant noise, and high 

variability, which resulted in significant performance improvement. 

With these and many other examples, deep learning has impressed, not only for the 

outstanding results it achieved, but also for its robustness against noise and variability, and its 

adaptability to a very broad range of tasks and their specificities. Thus, deep learning presents 

itself as a very promising alternative to common pattern recognition, image and signal 

processing, and computer vision techniques applied in biometric recognition. For ECG-based 

biometrics, it could be the way to overcome current limitations and increase competitiveness 

between ECG and more advanced traits like the face and fingerprints. 

 

3  A Convolutional Neural Network for ECG Biometrics 

3.1. General Structure Overview 

The proposed methodology follows the typical structure of a convolutional neural network: 

the first layers are convolutional, along with max-pooling, to allow the network to learn the 

most advantageous representation of the input signal segment for classification, but also 

quickly reduce the dimensionality to keep the number of parameters low, and thus control the 

computational cost and training time. 

The proposed convolutional neural network (cf. Fig. 2) was developed to integrate all 

common pipeline stages into a single, end-to-end model, receiving raw five-second ECG 

segments and delivering the corresponding identity. In the following subsections, each part of 

the convolutional networks and its purpose is presented, along with the baseline algorithm 

used for comparison and to complement them in some settings.  



 

 

 

Figure 2. Architecture of the proposed CNN model (the number of neurons on the fully connected 

layer refer to the entire dataset with 1019 possible identities). 

3.2. Convolutional and Pooling Layers 

The convolutional and pooling layers compose the first part of a convolutional neural 

network (LeCun et al. 2015). Each convolutional layer (cf. Fig. 3) is composed of feature 

maps, that are connected to the previous layer or input by sets of weights called filter banks. 

The filter banks are used for discrete convolution to obtain higher representations of the 

inputs at each convolutional layer (Zhang et al. 2017). Each unit of the feature map of a 

convolutional layer will correspond to a local patch of the previous layer or input, and these 

local weighted sums are passed through an activation function (LeCun et al. 2015). The 

dimensions of the local patches and the feature maps can be controlled by tuning the size of 

the filters, the stride of the convolution, and by using pooling layers. In the proposed 

architecture, the activation function used was the Rectified Linear Unit (ReLU) (Krizhevsky 

et al. 2012), the size of the filters was set at 5, the stride was set at 1, through empirical 

tuning.   

Pooling layers (cf. Fig. 3) have the main goal of reducing the dimension of the feature maps 

(and thus avoid unnecessary or harmful information, and control the computational costs), by 

merging similar features into one (LeCun et al. 2015). In the proposed CNN, Max-Pooling 

was used, and it works by scanning along each feature map, and keeping only the maximum 

value in each local neighbourhood considered. Here, the pooling stride was set at 1, and the 

pool size was set at 5.  

 

Figure 3. Illustration of the behaviour of convolutional and max-pooling layers in unidimensional 

convolutional neural networks. 

 



 

3.3. Fully-Connected Layers 

The feature maps output by the last convolutional layer are concatenated (flattened) into a 

single unidimensional vector of features, that serve as input to the fully-connected layers, the 

classification structure of the CNN. The fully-connected layers act as a multilayer perceptron, 

where each neuron is a function of the outputs of the neurons of the previous layer and the 

weights of the respective connections (Rumelhart et al. 1986), which means the features will 

be appropriately weighted and combined at each neuron, for the classifier to output the 

expected scores. 

In the proposed architecture, a single fully-connected layer is used, composed of N neurons 

(where N is the number of subjects), with softmax activations to output a normalised 

distribution over the identity labels (Taigman et al. 2014). The neuron that outputs the highest 

value will correspond to the predicted identity. 

3.4. Optimisation and Regularization 

3.4.1. Optimiser and Loss 

At each moment of the training phase, based on a batch of train samples fed to the network, a 

measure of loss is computed by comparing the output of the network with the true labels of 

the batch. Based on that loss, the weights/parameters that compose the neural network are 

adjusted to reduce the loss, through error backpropagation (Rumelhart et al. 1986, LeCun et 

al. 1998). 

An optimiser is a function that controls the way the weights are updated. In this work, the 

optimiser Adam was used. Adam is a first-order gradient-based optimization method for 

stochastic functions, and has been widely used for the simplicity of implementation, hyper-

parameter tuning, and effectiveness in diverse tasks (Kingma and Ba 2015). The learning rate 

was empirically adjusted to each situation, inside the range [0.01, 0.001], without decay, in 

order to allow for a quick and stable optimisation. Being a biometric identification task, a 

classification task with several labels, the loss measure selected was the Sparse Categorical 

Cross-entropy, to more effectively work with large quantity of labels and a single identity for 

each object. 

3.4.2. Dropout 

In order to reach the loss minimum on the train set, neural networks will tend to memorise the 

train samples, i.e., overfit by learning overly specific patterns on the train data, that do not 

correspond with the validation data. Dropouts are used to avoid this situation (Krizhevsky et 

al. 2012, Srivastava et al. 2014). They are placed between two layers on the convolutional 

network and act upon the connections between them, setting the corresponding input to zero. 

In the proposed method, dropouts are used on the connections between the flattened vector of 

features and the fully-connected layer, effectively blocking the access of the classifier to a 

part of the features, and requiring it to become less specific to the training set, and more 

robust to unexpected variability and noise. 



 

 

 

Figure 4. Illustration of the effects of the different data augmentation techniques on an example five-

second ECG segment (for easier visualisation, the original segment was denoised with a bandpass 

filter 1–30 Hz and had its amplitude z-score normalised). 

3.4.3. Data Augmentation 

Dropout is effective in keeping the balance between train and test performance and avoiding 

an overly specific neural network. However, it sometimes falls short, and data augmentation 

is used to avoid overfitting and attain a more robust classifier. Data augmentation works by 



 

applying small transformations/changes to the train samples, while protecting the integrity 

underlying label of each sample, to simulate larger datasets, and ensure the network is robust 

to such variabilities (Krizhevsky et al. 2012, Chatfield et al. 2014). 

Like deep learning in general, data augmentation techniques are significantly more frequent 

in 2D networks (for images) than in 1D (signals). Nevertheless, based on the recent work of 

Um et al. (2017), and taking into account the unique characteristics of the 

electrocardiographic signals, we propose and explored seven different types of data 

augmentation for 1D convolutional neural networks, presented below and illustrated on Fig. 

4. 

- Baseline Wander - Based on the typical ECG noise with the same name, this 

technique of data augmentation simulates a periodic undulation on the signal, by 

adding a sinusoidal wave with frequency near 1 Hz; 

- Cropping - This technique mutates an original train sample by taking a smaller, 

contiguous subsegment out of it, and resampling to match the original length. In the 

case of ECG signals, this technique effectively simulates slower cardiac frequencies; 

- Flip - Consists on the inversion of the signal along the time axis: the first sample 

becomes the last, and similarly for all samples of the segment. This technique causes 

the inversion of the waveforms P, Q, R, S, and T of the heartbeats, and the inversion 

of their relative locations;  

- Gaussian Noise - Gaussian noise (with mean zero and standard deviation about ten 

times lower than the signal amplitude) is introduced to the signal to cause high 

frequency distortions, similar to movement artifacts and powerline interference noise 

on the ECG signal;  

- Magnitude Scaling - This technique consists on the rescaling of the original train 

sample by the multiplication of the amplitude by a factor inferior or superior (but 

close) to 1; 

- Magnitude Warping - Similar to the previous technique, this type of data 

augmentation rescales the signal in a non-uniform fashion, using a sinusoidal wave 

instead of a fixed factor, so that certain parts of the signal will have their amplitude 

shrunk, and others will see their amplitude expanded; 

- Random Permutations - The signal is divided into N contiguous subsegments with 

similar length, and their order is randomly changed. This may cause discontinuities in 

the heartbeats and their constituent waveforms, simulating sensor faults or abrupt 

segment terminations. 

These data augmentation techniques were implemented on an online data generator for 

unidimensional data, that applied them, randomly, to the samples of each batch before 

feeding them to the neural network.  



 

 

 

Figure 5. Schema of the baseline algorithm adapted from Pinto et al. (2017) and Pinto (2017). 

 

4  Baseline Algorithm 

Throughout the development of the proposed Convolutional Neural Network, an algorithm, 

adapted and improved from the prior work of Pinto et al. (2017) and Pinto (2017), was used 

for direct comparison. As a pipeline algorithm, it is composed by stages of denoising, 

preparation, feature extraction, and decision, that are presented below and in Fig. 5. 

- Denoising stage - A bandpass filter with cutoff frequencies 1 and 30 Hz is used to 

clean the five-second ECG segments from both low and high frequency noise such as 

baseline wander (> 1 Hz) and powerline interference (60 Hz for the Canadian 

UofTDB signals);  

- Preparation stage - The Engelse-Zeelenberg algorithm is used to locate the R-peaks 

in the five-second ECG segments. Heartbeat segments are extracted by cropping the 

original segment 0.25 s before and 0.4 s after the R-peak locations. The heartbeats are 

then z-score normalised, subtracting the mean amplitude and dividing by the standard 

deviation. Among the heartbeats extracted from a five-second segment, the less noisy 

are selected using a Gaussian model, previously trained with a selection of cleaner 

heartbeats from train data of fifty subjects. The selected heartbeats are then averaged 

to build a single ensemble heartbeat that represents the five-second segment; 

- Feature extraction stage - The Discrete Cosine Transform (DCT) is applied to each 

ensemble heartbeat. As most useful information on the ECG signal is included in the 

frequency range [1, 30], the DCT coefficients that correspond to this range are 

selected and used as features on the decision stage; 

- Decision stage - The features are fed to a Support Vector Machine (SVM) classifier, 

previously deemed the best option, by Pinto et al. (2017), that will output a predicted 

identity. The second-best classifier, k-Nearest Neighbours (kNN) was also explored. 

 



 

5  Results and Benchmarking 

The performance of the proposed convolutional neural network architecture, as previously 

described, was evaluated on electrocardiographic recordings of the University of Toronto 

ECG Database (UofTDB) (Wahabi et al. 2014). This signal collection includes signals 

acquired from a total of 1019 subjects, using ungelled electrodes placed on their fingertips. 

The subjects were measured in five different postures (supine, tripod, exercise, standing, and 

sitting), on up to six occasions over a time period of six months, with a sampling frequency 

of 200 Hz. 

 

Figure 6. Illustration of the progressive phases of integration of the traditional pipeline stages into the 

CNN architecture, as explored in this chapter. For further details on each pipeline stage, cf. Fig. 5. 

Besides the entire database of 1019 subjects, two subsets were also used, with 25 and 100 

subjects, to evaluate the performance in smaller datasets. The datasets were divided, 70% of 

the data for training and 30% for testing. Also, besides the proposed method, the baseline 

algorithm as described here, and the state-of-the-art algorithm based on autoencoders 

proposed by Eduardo et al. (2017), and the algorithm based on AC/LDA features by Matta et 

al. (2011) were also evaluated in the same conditions. For these, it was occasionally 

necessary to perform adaptations in order to attend to different sampling frequencies. 

The proposed method also suffered slight adaptations to allow the study of the progressive 

integration of the traditional pipeline stages into the CNN model (cf. Fig. 6). Thus, besides 

the proposed end-to-end version that receives raw five-second ECG segments, three other 

variants were evaluated: the first receives denoised five-second segments (integrating all 

stages but denoising in the CNN); the second receives ensemble average heartbeats 

(integrating the stages of feature extraction and decision); and the third one receives DCT 

features (the CNN replaces only the decision stage). In these cases, the stages not integrated 

on the CNN correspond to the baseline algorithm (cf. section 4). The pool size of max-

pooling, that was set at 5 for five-second segments as input, was changed to 3 for ensemble 

heartbeats, or 2 for DCT features. 



 

 

 

Figure 7. Results of the proposed and baseline algorithms, when using DCT features as input. 

Analysing the results of the proposed algorithm with DCT features as input (cf. Fig. 7), it is 

possible to verify that its performance is similar to that of the baseline algorithm for 25 

subjects. However, with the increase of subjects on the dataset (with 100 and 1019 subjects), 

the proposed algorithm falls behind. We hypothesise this may be caused by the very concise 

information that the input carries, that is fitted for typical pipeline algorithms as the baseline, 

but not for the proposed deep learning method. The results of the evaluation without a feature 

extraction stage, using ensemble heartbeats as input (cf. Fig. 8), support this hypothesis, as 

the performance increases and approaches that of the baseline methods, and even surpasses 

that of the kNN classifier on the two smaller datasets. 

 

Figure 8. Results of the proposed and baseline algorithms, when using ensemble heartbeats as input. 

Integrating the stages of decision, feature extraction, signal preparation, and even denoising, 

on the deep learning model allows us to simplify the traditional pipeline structure, and use 

longer signal segments as inputs (in this case, five seconds). This means an increase of 

complexity of the input, which can harm the performance of the convolutional neural 

network, but also an increase of available information and variability, that can allow for a 

more robust model. 

The results of the use of denoised or raw five-second segments (cf. Fig. 9) show that tradeoff 

between signal complexity and the increase of robustness due to extra information and 

variability, as the results are similar to those of the CNN receiving ensemble heartbeats. One 

other interesting observation is that, in general, the results of the CNN with raw segments 

surpassed those of the CNN with denoised segments, which likely result from the benefit of 

increased variability. 



 

 

Figure 9. Results of the proposed and baseline algorithms, when using five-second ECG segments as 

input, raw or after the denoising stage. 

Increased variability is, in turn, the goal of data augmentation (D.A.). The aforementioned 

techniques were separately tested on the datasets of 25 and 100 subjects, and the results are 

presented in Fig. 10. As presented on the figure, most of the techniques of data augmentation 

bring improvements to the algorithm in the form of increased identification rates. The 

exceptions were magnitude scaling in the 25-subject dataset, cropping and magnitude 

warping in the 100-subject dataset, and Gaussian noise in both datasets. Knowing that the 

highest risk of data augmentation is the corruption of the underlying labels, especially 

sensitive in biometric tasks, this is the likely cause of the performance decay with these 

techniques. 

 

Figure 10. Results of the proposed algorithm, receiving raw five-second segments as input, with each 

technique of data augmentation, on the datasets of 25 and 100 subjects. 

 

Figure 11. Results of the proposed algorithm, receiving raw five-second segments as input, with 

combinations of the proposed data augmentation techniques. 



 

 

 

Figure 12. Direct benchmarking between the proposed architecture - CNN with Random 

Permutations as data augmentation and raw five-second segments as input, with the best baseline 

algorithm, and the two implemented state-of-the-art algorithms. 

Analysing the remaining techniques, the most promising were random permutations (that 

excelled in both datasets), baseline wander, and flip. These were evaluated in groups, by 

order of performance, to assess if the combination of two or three techniques would be 

beneficial to the performance of the algorithm. The results (cf. Fig. 11) show that the sole use 

of random permutations is the best option, despite the fact the combinations also caused the 

improvement of identification performance. 

We compared the proposed and baseline algorithms with state-of-the-art algorithms. As they 

were implemented and tested in the same context, the algorithms of Eduardo et al. (2017) and 

Matta et al. (2011) can be used for a direct benchmarking (cf. Fig. 12). The proposed method 

presents better results than all alternatives and a slightly slower decay with the increase of the 

number of subjects, which can denote better scalability to larger populations. The state-of-

the-art algorithms likely suffer from using nearest neighbour classifiers, prone to overfit, as 

the results of the baseline algorithm with kNN were also consistently worse than with SVM. 

The method of Eduardo et al. (2017), despite showing remarkably good results in the 

denoising of signals during our experiments (using the entire encoder-decoder), falls short in 

these settings. 

Finally, recalling the state-of-the-art works previously described, we can also compare the 

results of the proposed and baseline algorithms with the results reported by the most recent 

prior art works. The results of this comparison can be analysed in Table I. The IDR of the 

proposed and baseline algorithms may pale in comparison with some results reported in some 

of the considered prior works, but it is important to consider the evaluation settings. Only 

Wieclaw et al. (2017) used an off-the-person database as well, as opposed to the much 

cleaner signals of on-the-person databases still used by most researchers. Also, the UofTDB 

collection allowed us to evaluate our algorithm with a much larger set of subjects than any 

other identification method. 

However, it is important to recall that deep learning both requires and benefits greatly from 

large datasets, where each class is represented by a large amount of samples. While, as visible 

on the results presented here, data augmentation attenuates the prejudicial effects of scarce 

data, it is difficult to acquire sufficient ECG signals from each subject to compensate for the 



 

increased noise and variability of off-the-person settings. In the datasets used, each subject 

was represented, in average, by just 170 five-second ECG segments, which is arguably too 

few to train a convolutional neural network to robustly discriminate between 1019 

individuals. Considering this, with future efforts devoted to adequately deal with scarce data, 

deep learning methodologies could see their potential for ECG biometrics be better harnessed 

and place themselves as clearly better alternatives to traditional pipeline algorithms.  

Table I. Comparison of the proposed and baseline algorithms with recent state-of-the-art methods. 

Authors Brief Description Dataset IDR 

Proposed Method Raw segments + CNN with data 

augment. 

UofTDB (off-the-person) - 

1019 subjects 

96.1% 

Baseline DCT features + SVM UofTDB (off-the-person) - 

1019 sub. 

95.3% 

Salloum et al. (2017) LSTM-GRU RNN ECG-ID (on-the-person) - 90 

subj. 

100% 

Zhang et al. (2017) Multiscale CNN Several (on-the-person) - 18-

47 subj. 

93.5% 

Wieclaw et al. (2017) Heartbeats + MLP Private (off-the-person) - 18 

subj. 

89.0% 

Tan et al. (2017) Fiducials + RF fused with DWT 

+ WDIST kNN 

Several (on-the-person) - 184 

subj. 

99.5% 

Carreiras et al. (2016) Heartbeats + kNN Private (on-the-person) - 618 

subj. 

84.4% 

Brás and Pinho (2015) Kolmogorov-based compression PTB (on-the-person) - 52 

subj. 

99.9% 

Wang et al. (2013) Max-pooling of sparse coding 

coefficients 

PTB (on-the-person) - 100 

subj. 

99.5% 

 

6  Conclusion 

A method for biometric identification based on non-intrusive electrocardiogram acquisitions 

was proposed in this chapter. The method is based on the common structure of convolutional 

neural networks, that have proven to be able to completely and adequately replace traditional 

pipeline algorithms. With this goal in mind, the proposed method was evaluated when 

integrating more and more stages of the traditional ECG biometric pipeline, including a 

complete substitution by the CNN architecture, that received raw five-second ECG segments 

and output a decision on the corresponding identity. 

Besides this study on the progressive integration of stages on the traditional pipeline, seven 

data augmentation techniques for unidimensional signals were explored and their individual 

and collective impact on the algorithm’s performance was assessed. Furthermore, a 

previously proposed algorithm was adapted and improved and evaluated as a baseline 

algorithm, along with some promising state-of-the-art methods.  

The proposed CNN, the baseline, and the implemented state-of-the-art algorithms were 



 

 

evaluated on the University of Toronto ECG Collection, currently the most complete and 

challenging ECG database for biometrics, using the entire population of 1019 subjects and 

subsets of 25 and 100 individuals. The results have shown that the total integration of 

traditional pipeline processes in the CNN architecture was successful, as the results of the 

proposed CNN with data augmentation and receiving raw five-second segments surpassed, in 

all settings, those of the baseline and state-of-the-art algorithms in direct benchmarking. 

Among other recent state-of-the-art methods, considering the diverse dataset characteristics, 

the proposed method has also shown success as an accurate and robust biometric 

identification algorithm. 
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