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Abstract—Autonomous Vehicles aim to understand their sur-
rounding environment by detecting relevant objects in the scene,
which can be performed using a combination of sensors. The
accurate prediction of pedestrians is a particularly challenging
task, since the existing algorithms have more difficulty detecting
small objects. This work studies and addresses this often overlooked
problem by proposing Multimodal PointPillars (M-PP), a fast and
effective novel fusion architecture for 3D object detection. Inspired
by both MVX-Net and PointPillars, image features from a 2D
CNN-based feature map are fused with the 3D point cloud in an
early fusion architecture. By changing the heavy 3D convolutions
of MVX-Net to a set of convolutional layers in 2D space, along with
combining LiDAR and image information at an early stage, M-PP
considerably improves inference time over the baseline, running
at 28.49 Hz. It achieves inference speeds suitable for real-world
applications while keeping the high performance of multimodal
approaches. Extensive experiments show that our proposed ar-
chitecture outperforms both MVX-Net and PointPillars for the
pedestrian class in the KITTI 3D object detection dataset, with
62.78% inAPBEV (moderate difficulty), while also outperforming
MVX-Net in the nuScenes dataset. Moreover, experiments were
conducted to measure the detection performance based on object
distance. The performance of M-PP surpassed other methods in
pedestrian detection at any distance, particularly for faraway ob-
jects (more than 30 meters). Qualitative analysis shows that M-PP
visibly outperformed MVX-Net for pedestrians and cyclists, while
simultaneously making accurate predictions of cars.

Index Terms—Autonomous driving, deep learning, object
detection.

I. INTRODUCTION

W ITH the advances in Artificial Intelligence, more specifi-
cally in Deep Learning, Autonomous Driving has gained

an increased focus in the scientific community. These systems
intend to address the safety of the passengers and other road users
in various scenarios, by developing efficient and accurate sys-
tems that automate the driving activity and thus, prevent human
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failures. Moreover, pedestrian safety is a core requirement, since
pedestrian accidents have the highest fatality rates compared
with other types of road accidents [1]. With Artificial intelli-
gence, it is expected that the number of pedestrian accidents and
their severity will be diminished [2].

In this sense, the detection of pedestrians is one of the most
important tasks in autonomous driving but also a specially chal-
lenging one, since for state-of-the-art algorithms, small objects
are harder to detect [3], [4]. Although progress has been made
recently, the development of effective and safe Autonomous
Driving systems is still a very challenging task [5].

The implementation of self-driving cars needs to meet strict
requirements regarding human safety. In a world conceived
for humans, the deployment of such intelligent systems is a
huge challenge. Especially, when these systems interact with
pedestrians, a high degree of caution is required as their correct
and timely detection and classification is critical.

For this reason, it is imperative to have intelligent systems
designed to detect the diverse elements of the environment sur-
rounding the self-driving vehicle. Thus, object detection appli-
cations are developed to detect and recognize the most relevant
parts of the scene, as well as their position, size, orientation and
class. Objects of interest usually consist of dynamic objects,
including vehicles, such as cars, motorcyclists and cyclists, as
well as pedestrians. This last category is often the focus when
developing Autonomous Driving systems, as they are the most
vulnerable road users [6].

The perception of the scene is crucial to develop self-driving
vehicles, and therefore, appropriate sensor data enables the
development of effective algorithms. The low resolution and
texture of LiDAR (Light Detection and Ranging) point clouds
make them less precise for the detection of smaller objects, such
as pedestrians. These objects are clearly visible in 2D images,
but are difficult to detect and distinguish from other objects in
point cloud representations. On the other hand, the image does
not provide depth information, however it yields fine-grained
texture and color information. Therefore, in comparison with
LiDAR-only or camera-only methods, fusion architectures can
overcome the limitations of each data modality by combining
information of LiDAR point clouds with images [7].

In this paper, we propose Multimodal PointPillars (M-PP),
an object detector that combines LiDAR and RGB camera
modalities. Based on MVX-Net (Multimodal VoxelNet) [8],
M-PP combines the PointPillars [9] 3D detector with a 2D
encoder for image feature extraction in a fusion architecture.
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This match benefits from the efficient processing of point clouds
in a pillar-based 2D representation as well as the additional
information from the image, enabling more accurate detection
of small objects, while keeping a low inference time. Relative
to the prior art, the contributions of this work are:
� A new approach for multimodal object detection based on

PointPillars and MVX-Net;
� State-of-the-art performance in object detection for au-

tonomous vehicles, with especial benefits for smaller ob-
ject classes;

� Considerable improvements in inference time for more
viable real applications.

II. RELATED WORK

The use of Deep Learning for scene understanding using
point clouds is a growing research field that has gained an
increased interest in the last years [10]. Benchmark datasets
contributed to the growth of 3D point clouds in deep learning,
namely KITTI [11], nuScenes [12], Waymo [13], among oth-
ers. Diverse approaches have been proposed to address several
problems related to point cloud perception, such as 3D shape
classification, 3D object detection, and 3D point cloud segmen-
tation. In this regard, we present a comprehensive survey of the
most relevant proposed architectures for point cloud learning.
The state-of-the-art proposals for 3D object detection can be
categorized by the data representations they rely on. Thus, these
architectures can be divided into three categories: grid-based
methods, point-based methods, and graph-based methods [14].

A. Grid-Based Methods

Grid-based methods transform a point cloud into a regular
grid to be fed into a neural network. VoxelNet [15] proposes
an approach for extracting features from points in 3D voxels.
A point cloud is divided into equally spaced 3D voxels and
then, a unified feature representation is generated from the set of
points within each voxel. This is done through the Voxel Feature
Encoding (VFE) layer, which is a newly introduced technique
to locally encode the points in a voxel. The detections are then
obtained by passing the resulting volumetric representation into
a Region Proposal Network (RPN). The main disadvantage of
this method is the high computational cost, since the memory
consumption and computational complexity of the 3D CNN
grows cubically with the resolution of the voxel grid.

Moreover, due to the sparsity of the point clouds, numerous
empty voxels are generated, leading to unnecessary use of
computational resources. SECOND [16] proposes some modifi-
cations to the VoxelNet architecture. It implements a 3D sparse
convolution method, which increases the speed of both training
and inference. Also, a new form of angle loss regression is
introduced to improve the performance of orientation estima-
tion. This approach achieves lower inference time by avoiding
unnecessary operations in empty voxels.

PointPillars [9], proposed in 2019, is motivated by the previ-
ously described works and aims to achieve fast processing time
by dividing a 3D point cloud into vertical columns or pillars.
A new encoder is proposed, which employs PointNets to learn

a local representation of the points in each pillar, enabling the
use of 2D convolutions. Instead of feeding voxels into 3D con-
volutions, this method applies 2D convolutions to the projected
pillars, reducing the computation time.

The point cloud is first divided into pillars, where the height
of each pillar covers the entire point cloud. Each point in each
pillar is augmented with the x, y and z deltas between the point
and the mean of the points in the pillar, as well as its offset to
the center of the pillar in x and y. The resulting features of each
pillar are passed to a simplified version of PointNet, outputting
a tensor of size (C,P ), where C is the number of channels per
each non-empty pillar and P is the maximum number of pillars.
After being encoded, the features are scattered back to their
respective locations to create a pseudo-image of size (C,H,W ),
where H represents the height and W the width of the pseudo-
image. Following this methodology, a 2D CNN backbone is
employed, allowing efficient processing. A detection head is
finally applied to perform object detection, similar to Single Shot
Detector (SSD) [17], modified to output 3D bounding boxes with
orientation.

Point-Voxel Feature Set Abstraction for 3D Object Detection
(PV-RCNN) [18] takes advantage of the integration of both 3D
voxel CNN and PointNet abstraction, thereby learning more
discriminative point cloud features. It is a two-stage 3D detection
framework, which achieves accurate 3D object detection from
point clouds. The previous works in 3D detection are based on
either 3D voxel CNN with sparse convolutions, which generate
high-quality 3D object proposals, or PointNet-based architec-
tures, which capture more accurate contextual information.

This proposal benefits from both methods, by applying a 3D
voxel CNN with sparse convolution as the backbone. Two novel
operations are implemented to perform the correspondence of
the 3D object proposal features from the scene. First, the voxels
of the overall scene feature volumes are transformed into a
small number of feature keypoints, by employing voxel-to-
keypoint scene encoding. Then, the scene keypoint features are
aggregated into RoI (Region of Interest) grids to perform the
confidence prediction and location refinement.

B. Sensor Fusion

The data acquired through a LiDAR sensor provides accurate
depth information of the surrounding environment in the form
of 3D point clouds. These sensors are robust to illumination
changes and less affected by variations in weather conditions
than visual cameras [26], [27]. However, LiDAR technologies
produce sparse representations of distant objects and are unable
to capture the fine textures of objects, unlike RGB cameras,
which provide detailed texture information [26]. Moreover, the
generated points are not uniformly distributed in 3D space, with
points becoming more sparse for distant objects. For these rea-
sons, object detection would benefit from a combination of the
two types of data modalities, providing more robust perception
systems. Therefore, the information acquired by the different
data modalities is merged, following a sensor fusion strategy.

There are three main data fusion stages: early, which consists
in merging raw data from each sensor modality and then feeding
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Fig. 1. Overview of the different types of data fusion methods.

that to a network; late, which involves having different networks
for each type of data and then merging the outputs; and middle,
which consists in fusing features from each modality at interme-
diate layers [26]. Fig. 1 provides an overview of each of these
fusion methods.

1) Early Fusion: merges the raw or pre-processed data ob-
tained from the different sensors before feeding them into a
neural network. This strategy benefits from low memory costs,
since it jointly processes the multiple sensor modalities and
thus, only one neural network is employed. The network learns
the combination of features from both modalities at an early
stage, which allows exploring the information fully from the raw
data. However, this technique has limitations in terms of model
flexibility. Replacing an input sensor modality or changing input
channels sizes, implies the complete retraining of the network.
Moreover, early fusion suffers from spatial-temporal data mis-
alignment, which implies that when calibration errors occur,
data re-alignment is necessary. In addition, different sensor
modalities commonly have different sampling rates, however,
early fusion networks require their inputs to be synchronized,
which may involve discarding information from modalities with
faster sampling rates or repeating data from slower modalities.

MVX-Net [8] is a single-shot object detection architecture,
published in 2019. It combines RGB and LiDAR data by
implementing two early fusion approaches: PointFusion and
VoxelFusion. The PointFusion method employs a 2D object
detection network to extract high-level image features which
encode semantic information. Then, by projecting each Li-
DAR point onto the image and collecting the features at their
corresponding image coordinates, this algorithm is capable of
gathering information about the presence of objects, as well as
their class and localization from both 2D images and 3D point
clouds.

On the other hand, VoxelFusion aggregates features from the
RGB image at the voxel level. First, the 3D space is divided into
a set of equally spaced voxels and the points are grouped into
these voxels. By projecting each non-empty voxel onto the image
plane, a 2D ROI is produced. A pre-trained detector network is
employed to output feature maps, and by pooling the features
within the ROI, a feature vector is produced for each non-empty

voxel. These features are then appended to the voxel features
obtained from the LiDAR points.

2) Late Fusion: uses separate networks to learn relevant
features in each data modality, and then combines their outputs
into a single predictor. These techniques allow including new
sensor modalities without interfering with the existing networks,
with only the respective network needing to be trained. However,
having multiple models leads to higher computational cost.

3) Middle Fusion: Fuses data or relevant features from the
different modalities in the middle of the architecture, one or
multiple times. One approach that implements middle fusion is
Multi-View 3D Object Detection (MV3D) [22], a sensor-fusion
framework that uses LiDAR point clouds and RGB images
as input and predicts oriented 3D bounding boxes. First, 3D
object proposals are generated from the Bird’s Eye View (BEV)
projection of the LiDAR points, and then, multi-view features
are deeply fused through region-based representation. Another
approach is the Aggregate View Object Detection (AVOD) [23],
which proposes a middle fusion based method. This proposal
relies on feature extractors to generate feature maps from the
BEV map and from the RGB image. An RPN is employed to
generate non-oriented region proposals, taking as input the fea-
ture maps. Finally, the region proposals are fed to the detection
network for the final classification.

C. Overview and Comparison

Table I presents results reported in [10] for several state-of-
the-art architectures, using the test set of the KITTI 3D detection
benchmark. In summary, PointPillars achieves the highest infer-
ence speed, with 62 Hz, however, performance on the pedestrian
class is low relative to other methods. The results for MVX-Net
were only reported for the class car, which achieves competitive
performance compared with the other multimodal approaches.
Moreover, by fusing information from LiDAR and RGB camera
modalities at an early stage, its performance and run-time heav-
ily depend on its 3D detection component, as a result MVX-Net
is a good candidate for improvement. Therefore, we propose a
new architecture that joins the advantages of these methods, by
using a single-shot architecture and combining sensor data at
an early stage. Our work proposes a fusion approach focused
on pedestrian detection with low inference time, which can be a
suitable prototype for a real-time environment.

III. METHODOLOGY

The proposed approach, Multimodal PointPillars (M-PP),
modifies the MVX-Net framework to use PointPillars as a 3D
detector. The MVX-Net framework enables the mixing and
matching of different object detection networks for both image
and LiDAR modalities. It is an early fusion methodology, and
therefore, several architectures can integrate its pipeline. Al-
though more recent and sophisticated base architectures could
be used, we find that MVX-Net and PointPillars offer the optimal
combination of simplicity and performance to allow us to obtain
an efficient and flexible framework.
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TABLE I
COMPARISON OF THE RESULTS OBTAINED FOR 3D OBJECT DETECTION ON THE KITTI TEST 3D DETECTION BENCHMARK, ADAPTED FROM [10]

Fig. 2. Overview of Multimodal PointPillars architecture: (a) presents all modules that compose the fusion network; (b) denotes the preprocessing of the point
cloud, by dividing it into pillars, stacking them, and learning a set of features (this process is hereby designated as pillarization); and (c) represents the fusion of
image and point features, by first projecting the point cloud into the image and indexing the image features. Point and image features are fused through summation
and a set of features is learned for each pillar, which are scattered back to a 2D pseudo-image.

A. Overall Architecture

The image modality aims to complement the information
obtained by the LiDAR point clouds, performing as an auxiliary
module for the object detection task. For this reason, M-PP uses
a 2D convolutional network to learn image features. Fig. 2 shows
our proposed architecture. In Fig. 2(a) the point cloud is passed
to a module responsible for extracting the point features, here
named pillarization, detailed in Fig. 2(b). These point features,
as well as image features from the 2D network are passed to the

fusion module, Pillar Fusion, which processes the whole fusion
part, detailed in Fig. 2(c).

The processed point cloud is first equally divided into vertical
columns or pillars, in Fig. 2(b). In addition to x, y, z, and
intensity, the points are augmented by adding the arithmetic
mean of the points in the pillar, as well as the offset in x and
y, between each point and the center of the pillar, forming a
stacked pillar representation of (D,P,N), which are the number
of input features per point, maximum number of pillars, and
maximum number of points per pillar, respectively. A set of



OLIVEIRA et al.: MULTIMODAL POINTPILLARS FOR EFFICIENT OBJECT DETECTION IN AUTONOMOUS VEHICLES 85

features is obtained for each point in the pillar by applying a fully
connected layer, followed by BatchNorm [28] and ReLU [29].
The output tensor has size (C,P,N), which refers, respectively,
to the number of point features, the maximum number of pillars,
and the maximum number of points per pillar.

Simultaneously, the RGB image is fed to a ResNet back-
bone followed by an FPN, obtaining a feature map. Unlike
MVX-Net, the dimensionality of these features is first reduced
by a convolutional layer. Applying the calibration matrix, the raw
point cloud is projected into the image plane, in Fig. 2(c). The
image features are then indexed by their corresponding projected
points in the point cloud. The image and point features are then
combined in the Pillar Fusion module via a sum operation, in
Fig. 2(c). Through a max pooling layer, a set of features are
learned for each pillar, forming a tensor of (C,P ). These features
are then scattered back to the original pillar locations, creating a
pseudo-image in a 2D representation of size (C,H,W ), where
H and W are the height and width of the generated feature
map. A 2D backbone composed of convolutional layers is used
followed by a single-shot detection head [17].

B. Objective Functions

This methodology uses the loss functions proposed in SEC-
OND [16]. Each ground truth or anchor box can be represented as
(x, y, z, w, l, h, θ) where x, y, and z are the position coordinates
of the bounding box; w, l, h correspond to its width, length, and
height; and θ is its orientation or yaw angle.

At first, the bounding box regression requires computing the
differences between the ground-truth and anchor bounding box,
relative to the size of the anchor. These relative differences are
given by:

Δx =
xgt − xa

da
, Δy =

ygt − ya

da
, Δz =

zgt − za

ha
, (1)

Δw = log

(
wgt

wa

)
, Δl = log

(
lgt

la

)
, Δh = log

(
hgt

ha

)
,

(2)

Δθ = sin(θgt − θa), (3)

where (xgt, ygt, zgt, wgt, lgt, hgt, θgt) and (xa, ya, za, wa,
la, ha, θa) are the parameters of the ground truth and the anchor
bounding box respectively, and da =

√
(la)2 + (wa)2 is the

diagonal of the base of the anchor box.
The bounding box localization is supervised via a smooth L1

loss of these relative differences:

Lloc =
∑

Δb∈(x,y,z,w,l,h)

SmoothL1(Δb). (4)

As the angle localization loss can not differentiate boxes with
opposite orientations, the model is also tasked with predicting
which side is the front of the object. This heading is learned by
adding a direction classifier, using a cross-entropy loss function,
as follows:

Ldir = −
∑
d∈D

yd · log(ŷd), (5)

where D is the set of directions, y is the ground-truth direction
and ŷ is the model output direction. Following SECOND [16]
and PointPillars [9], we consider only two opposing directions.

The classification training uses the focal loss [30]:

Lcls = −αt(1− pt)
γ log(pt), (6)

where pt is the model’s confidence in the ground truth class. As
recommended in [16], the parameters were set to α = 0.25 and
γ = 2.

The complete loss function is then given by a weighted sum
of these components:

Ltotal =
1

Npos
(βloc Lloc + βcls Lcls + βdir Ldir), (7)

where Npos refers to the number of positive anchors. Follow-
ing the original SECOND implementation, in this work the
loss weighting coefficients are set as βloc = 2, βcls = 1 and
βdir = 0.2.

IV. EXPERIMENTAL SETUP

In this section, we present an overview of the KITTI dataset
and the metrics used to evaluate 3D object detection methods.
We detail the hyperparameters and settings used to train our
method, as well as the baselines, including data augmentation
strategies.

A. Data Processing

To train and test the proposed framework, KITTI 3D ob-
ject detection benchmark was used. This is one of the most
widely used datasets in the literature for 3D object detection in
Autonomous Driving. The dataset was recorded while driving
around a mid-size city, in rural areas, and on highways in
Karlsruhe, Germany. The state-of-the-art methods present their
benchmark results using this dataset and therefore, the employ-
ment of KITTI becomes an obvious choice to perform a direct
comparison with the published results. Typically, three classes
are used in this dataset: car, pedestrian, and cyclist. A difficulty
is assigned to each object regarding the minimum bounding
box height, the occlusion level, and the maximum truncation,
consisting of Easy (E), Moderate (M), and Hard (H) difficulties.
The proposed architecture is evaluated in the validation set. The
dataset was split into train and validation sets, using a standard
division available in the literature. The 7481 training examples
were divided into 3712 samples for the training set and 3769
samples for the validation set.

Average Precision (AP) is a widely used metric for object
detection. AP consists of the average of the maximum precision
achieved s, with at least a recall value r for a defined range of
recall values. These values were computed by the authors of
KITTI for 40 recall positions, rather than the previously used 11
recall positions [31]. Equation (8) shows this formulation:

AP =
1

40

∑
r∈{ 1

40 ,
2
40 ,...,1}

max
r:r>r

s(r̃). (8)
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In the KITTI benchmark, this metric is used to evaluate the
model performance in 3D and Bird’s Eye View (BEV) projec-
tion, along with the Average Orientation Similarity (AOS) [31].
Under our experiments, the AP in BEV (APBEV ) was used to
evaluate and benchmark the models.

B. Network Configuration and Training

Each point cloud is equally divided into pillars over the x and
y axes. Under the conducted experiments, we defined 0.16 m as
the pillar size for x and y. The maximum number of pillars (P ) is
16000 and the maximum number of points per pillar (N ) is 64. To
generate the anchor boxes, we defined different settings for each
class. The range used for cars was (0, 70.4), (−39.68, 39.68),
(−1.78, −1.78) for x, y, and z, respectively, and for pedestrians
and cyclists (0, 70.4), (−39.68, 39.68), (−0.6, −0.6). Cars have
a width, length, and height of (0.6, 0.8, 1.73), pedestrians of
(0.6, 1.76, 1.73), and cyclists of (1.6, 3.9, 1.56). The positive
and negative thresholds were set to 0.6 and 0.45 for cars, and
0.5 and 0.35 for pedestrians and cyclists, respectively.

To benchmark the proposed methodology, PointPillars,
and MVX-Net were end-to-end trained, using ADAM opti-
mizer [32]. PointPillars with an initial learning rate of 0.0018,
using batch size 6 for 160 epochs. MVX-Net was trained with
an initial learning rate of 0.003, batch size 2 for 120 epochs.

To train the proposed architecture, M-PP, the ADAM opti-
mizer was used with an initial learning rate of 0.0018. A weight
decay of 0.01 was applied to reduce the learning rate during the
training, and a batch size of 2 was used for 120 epochs. Moreover,
an additional architecture was implemented, by using SECOND
as the 3D detector in a fusion approach based on MVX-Net
(M-SECOND). M-SECOND was end-to-end trained with the
same setup as MVX-Net.

C. Data Augmentation

Data augmentation techniques were applied to train M-PP and
PointPillars. Several architectures apply augmentation in order
to improve performance on KITTI dataset [9], [16], [33]. This
strategy is widely used to increase the diversity of the data, which
leads to a better generalization of the model. The transformations
are applied to the raw point clouds. They consist of random world
flips along the x axis, random world rotations around the z axis
with an angle sampled from [−π

4 ,
π
4 ] radians, a random world

scaling with a scaling factor sampled from [0.95, 1.05] and a
global translation with (x, y, z) drawn from a [0, 0.2] interval.
To the input images, no type of augmentation is applied, other
than simple resize and normalization procedures.

PointPillars applies a ground-truth sampling strategy, pro-
posed in [16], that randomly introduces different ground-truth
objects into the point clouds during training [34]. We extend
this type of augmentation to multimodal detection by sampling
image features only for the points in the original point cloud. We
conduct multiple experiments using different configuration pa-
rameters or Sampling Strategies (SS) to study their effect on our
proposed architecture: namely, SS1 applies sampling to pedes-
trians and cyclists, SS2 applies it only for cyclists, SS3 applies

sampling to all three object classes (car, pedestrian, and cyclist),
and SS4 applies sampling to all objects except pedestrians.

V. EXPERIMENTS

In this section, we present the results obtained in the exper-
iments performed. The results are assessed regarding perfor-
mance and inference time. We present a comparison between
the proposed architectures, highlighting the best trade-offs in
this context. Additionally, we perform an in-depth analysis of
the performance impact of multimodality in these architectures,
considering the most relevant aspects for object detection.

A. Sampling Strategy

The M-PP baseline uses the transformations described in the
previous chapter, without any ground-truth sampling. However,
in order to optimize the model and achieve better results, a study
was conducted by performing a set of experiments regarding
ground-truth sampling. Hahner et al. [35] developed an extensive
study focused on data augmentation in PointPillars. In particular,
this strategy relies on two parameters: GT-Filtering and GT-
Sampling.

GT-Filtering consists in excluding the annotations that con-
tain less than a certain amount of points. GT-Sampling is the
operation that samples the additional objects into the scene.
During a pre-processing phase, the annotations and their cor-
responding points in the train set are saved, by iterating once
through the entire dataset. During training, ground-truth objects
are randomly added to the scene, provided that the additional
objects do not collide with any of the original objects in the
scene. The number of objects of each class to be added is
pre-defined. Hahner et al. [35] only conduct experiments to
assess the impact of data augmentation for the class Car, which
is the most over-represented class in KITTI. Under this work,
a simpler study is developed, applied for all the three classes
in the dataset, particularly focusing in cyclists and pedestrians
classes, which are underrepresented in the KITTI dataset.

Table II presents the experiments described, as well as the
M-PP baseline (without ground-truth sampling). The configu-
ration parameters were applied with the same values for all the
difficulties. M-PP SS1 applies the same values to the parameters
for sampling pedestrians and cyclists. The results show that
the cyclists are highly improved, however, the performance on
pedestrians decreases. In M-PP SS2 the same sampling configu-
ration is applied for cyclists, but not employing any sampling to
the other objects. This strategy shows considerable improvement
for the pedestrians class, by only sampling the cyclists in the
scene. An in-depth analysis of this behavior is further developed.

M-PP SS3 applies more ground-truths to all the three object
classes and decreases the number of minimal points required for
each sample object. The results show improvements in both cars
and cyclists classes, however lower results in pedestrians class.
Finally, M-PP SS4 configuration values achieved comparable
results with M-PP SS1 and M-PP SS3 for cyclists. However,
it does not employ any sampling to the pedestrians since from
the previous experiments we could conclude that oversampling
this class deteriorates its performance. Overall, the results show
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TABLE II
COMPARISON OF THE RESULTS OBTAINED ON THE KITTI VALIDATION SET, USING THE SAMPLING STRATEGY PROPOSED IN [16]

TABLE III
COMPARISON OF THE RESULTS OBTAINED ON THE KITTI VALIDATION SET

notable improvements in pedestrians and cyclists classes, high-
lighting M-PP SS2 with the best results in pedestrians class.
Therefore, SS2 will be hereby referred as M-PP.

Table III shows the results obtained for each model archi-
tecture. Additionally, the more relevant experiments conducted
by applying oversampling are also presented. The models were
evaluated using the KITTI validation set. The APBEV metric is
used with IoU thresholds of 0.7 for cars and 0.5 for pedestrians
and cyclists.

MVX-Net (baseline) obtained the least favorable performance
in the cyclists class. Cyclists are the least represented class in
the KITTI dataset, and thus, as the baseline architecture does
not apply any sampling strategy, the performance degrades.
Moreover, the results demonstrate that PointPillars benefits from
multimodality, achieving better results for the three classes
with our approach M-PP. In the fusion approaches: MVX-Net,
M-PP, and M-SECOND, the results achieved for the pedestrians
class have minimal differences between the Moderate to Hard
difficulties, varying less than 5%. This can be justified by the
improvement that fusion strategies have regarding small objects
and at longer distances, Fig. 3. Although the results obtained
by M-SECOND are comparable with M-PP, the model shows
decreased performance for the cyclists class.

B. Object Distance Analysis

In order to understand the improvements of our model com-
pared to the baseline, an analysis of detection performance based

Fig. 3. APBEV performance of object detection based on distance (KITTI
validation set).

on object distance was conducted. For each class, we split ground
truth objects and detections according to their distance into three
buckets, 0 to 15 m, 15 to 30 m, and greater than 30 m. For
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Fig. 4. Predictions from MVX-Net (above) and M-PP (below) in the KITTI validation set. Car detections in blue, pedestrian detections in red, and cyclist
detections in orange.

Fig. 5. Misclassification examples of M-PP in the KITTI validation set. Car detections in blue, pedestrian detections in red, and cyclist detections in orange.

each bin, we compute APBEV , ignoring both ground truth and
detected objects that fall outside the bin. The results are shown in
Fig. 3. Our detector outperforms both MVX-Net and PointPillars
for closer objects (0− 15 m), although PointPillars is superior
for faraway cars and cyclists. M-PP improves pedestrian detec-
tion at every distance, achieving a performance approximately
10% higher than PointPillars for distances between 15 and 30
meters and 6% higher than MVX-Net for distances higher than
30 meters. For smaller objects, the sparseness of the point cloud
can be compensated by the semantic information of the RGB
image, enabling a more complete representation of the object
than a point cloud-only approach. This behavior is evidenced by
the higher performance of M-PP in pedestrians.

As for the better results of M-PP in close-range versus the
benefits of PP in more distant cars and cyclists, this may be
explained by the applied sampling strategy in each methodology.
While PP applies sampling for all three classes (as in [16]), M-PP
results refer to the use of SS2, which only applies sampling
to the cyclists class. As visible in Table II, this results in im-
proved overall performance in detecting pedestrians at all ranges.
However, this improvement appears to come at the expense of
detection performance on cars and cyclists at a distance greater
than 15 meters, where PP outperforms the proposed method.
According to these results, M-PP performance for more distant
cars and cyclists could, if needed, likely be improved by applying

a similar sampling strategy to the one used by PP, naturally at
the expense of pedestrian detection performance.

C. Qualitative Analysis

Some qualitative results are presented in Figs. 4 and 5. The
predictions are shown as 3D bounding boxes projected onto the
RGB image and the point cloud in BEV projection. Different
colors are used to distinguish the detections by class. Blue, red,
and orange boxes for cars, pedestrians, and cyclists, respectively.

In Figure 4 predictions from MVX-Net (above) and M-PP
(below) are presented in samples (a) 1069, (b) 1106, and (c) 2418
in the KITTI validation set. The examples provided show var-
ious scenes, which include diverse objects. For both models,
predictions of cars are generally accurate, typically failing with
false positives in objects of neighboring classes, such as vans or
trucks. Pedestrians and cyclists are the most challenging classes
and sometimes are misclassified as each other. Sample (b) shows
an example of this behavior in M-PP results, which misclassifies
a pedestrian as a cyclist. In this particular sample, the object is
labeled as a pedestrian, although the person is holding a bicycle,
which confuses the model, resulting in ambiguous behavior. This
sample includes pedestrians at a distance of more than 25 meters
who are not visible by MVX-Net but are accurately detected with
M-PP. Moreover, MVX-Net predicts more false positives for the
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TABLE IV
COMPARISON OF THE INFERENCE SPEED RESULTS OBTAINED

WITH EACH ARCHITECTURE

pedestrian class, as shown in example (a), where M-PP detects
better pedestrians and cyclists.

Fig. 5 presents some misclassification examples of M-PP in
samples (a) 147, (b) 615, and (c) 1693 in the KITTI validation
set. Sample (a) shows people sitting on an outdoor coffee shop,
detected by M-PP as pedestrians. Although the model correctly
identifies these objects, there are no annotations in the dataset,
contributing to the deterioration of the model performance under
the metrics used. In Fig. 5(b), M-PP misclassifies a cyclist as a
pedestrian, and in (c) it does the opposite. Moreover, in some
samples, there are unlabeled objects that are accurately detected
by M-PP, however for the evaluation pipeline they consist of
false positives.

D. Inference Rate

To develop an effective application for object detection in
the context of Autonomous Driving, inference speed is a core
component for running in real-time. Therefore, the inference rate
was computed for each architecture. The training and evaluation
of the proposed framework, as well as the selected state-of-the-
art architectures were conducted using a system with a Xeon
Gold 6150 CPU and a Tesla V100-SXM2 32 GB GPU.

Table IV presents the average inference (in Hz) over the whole
KITTI validation dataset (3769 samples). We find M-PP to be the
fastest approach, running at 28.49 Hz. M-SECOND decreases
more than 14 Hz in inference when compared with M-PP. In
a real-world context, the developed product or application has
to accomplish a set of requirements depending on the target
hardware used. The resources to run the model would be much
lower than the ones used to perform these tests, and thus, the
model inference would automatically drop. Considering this, the
results obtained with M-PP compared with M-SECOND reveal
a relevant difference for real-time inference.

Fig. 6 presents a graphic of the trade-off between performance
(in %) for APBEV in the pedestrians class and inference rate (in
Hz). As in the KITTI benchmark, this trade-off was computed
in moderate difficulty [11].

Both M-PP and M-SECOND achieved the best results, reach-
ing a balance between performance and inference speed. M-
SECOND shows a slightly higher performance, however, the
gain in the inference speed with M-PP compensates for this.
As LiDAR typically scans at a rate of 10 Hz [36], a solution
intended to run in real-time should be able to execute at least
this rate (< 100 ms). In this sense, our approach addresses
real-world run-time requirements and therefore, it is suitable
for deployment.

Fig. 6. Trade-off between performance (in %) for APBEV in moderate
difficulty of pedestrians class and inference rate (in Hz). M-PP runs faster
than the other fusion approaches, at 28.49 Hz, while achieving a competitive
performance.

E. Experiments on Other Data

Additionally, in order to assess the behavior of the proposed
methodology in different scenarios and conditions, experiments
were conducted on the nuScenes object detection dataset [12].
The proposed methodology, M-PP, was trained, evaluated, and
benchmarked against the state-of-the-art approach, MVX-Net,
on the nuScenes validation set.

In these experiments, only the front camera was used for
fusion. Additionally, models trained on nuScenes are typically
given multiple sequential point clouds accumulated and ego-
motion corrected. This means that some dynamic objects may
be “stretched” in the input grid due to their movement. To
compensate for this, an adaptation to the proposed architecture
was explored using an FPN module similar to [37], denoted
as M-PP FPN. By processing features at multiple scales, this
FPN enables the model to deal with these variable “size”
objects. For both MVX-Net and M-PP the procedure in [12]
is followed, and 10 sequential LiDAR sweeps are concate-
nated into a single point cloud before providing them to the
models.

The results of these experiments with M-PP and MVX-Net
on nuScenes are presented in Table V. As one can see, even in
the different conditions and scenarios offered by the nuScenes
dataset, the M-PP approach offers improved performance over
MVX-Net. In agreement with the discussions presented above,
this is also true for classes such as ‘Pedestrian’, ‘Motorcycle’,
or ‘Traffic cone’, which may once again denote the higher
capabilities of the proposed method for detecting small objects.
Moreover, the greatest improvements were found when using the
alternative M-PP FPN architecture, which has shown consider-
able promise for small object detection and should be further
explored in future research endeavors.
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TABLE V
COMPARISON OF THE RESULTS OBTAINED ON THE NUSCENES VALIDATION SET

VI. CONCLUSIONS AND FUTURE WORK

In this work, we tackle the overlooked problem of under-
performing small object detection by proposing a novel fusion
architecture for 3D object detection. We show that a pillar-based
approach to 3D Object Detection benefits from the integration
of image based data. An MVX-Net-like approach was used
to extract relevant image features from the 2D detector. This
architecture allows joint processing of image and point cloud
information, allying the advantages of image and LiDAR modal-
ities in an early stage. The results obtained with M-PP show an
improvement on both performance and inference speed when
compared with the baseline MVX-Net.

Additionally, experiments were conducted applying different
parameters for ground-truth sampling. This technique showed
to noticeably improve the performance for the cyclist class,
which are the most underrepresented in the KITTI dataset, by
adding these objects to the scene. Moreover, by oversampling the
cyclist class, the performance in pedestrians improves. Through
a qualitative analysis, we showed that M-PP is better at detecting
pedestrians and cyclists, while maintaining accurate predictions
of cars, when compared with MVX-Net. Our method achieved
a compromise between performance and inference time, sig-
nificantly accelerating the inference speed of MVX-Net with
28.49 Hz, as well as outperforming both MVX-Net and Point-
Pillars in pedestrian detection, achieving 62.78% for pedestrians
Moderate difficulty in the KITTI validation set. These conclu-
sions are also confirmed by the results obtained on the nuScenes
dataset.

In order to bring the proposed methodology closer to appli-
cability in real vehicles, it would be useful to explore the use
of a more compelling real-world dataset such as Waymo [13].
Additionally, although MVX-Net and PointPillars offered, in
our opinion, an optimal combination of simplicity and perfor-
mance, it would be important to explore similar multimodal
3D frameworks inspired on more recent base architectures. On
the other hand, like MVX-Net, our proposal faces limitations
arising from the availability, synchronization, and calibration
of the LiDAR sensor. These approaches are only able to detect
objects where there are LiDAR points in the point cloud. As an
early fusion approach, they require alignment of sampling rates
and temporal synchronization among sensors. The robustness of
our method to calibration errors and other sensor failures is also
yet to be studied. Future work on efficient multimodal object
detection should also involve improving the robustness of these
methods to sensor failures and miscalibrated data, since future
safe autonomous driving systems will require efficient, effective
and robust perception modules.
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