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Abstract—The popularity of deep learning methods has in-
creased significantly, in no small part due to their impressive
performance in several application scenarios. This paper focuses
on recognising activities in an in-vehicle environment and mea-
suring the impact that factors such as resolution, aspect ratio,
field of view and framerate have on the performance of the
model. The use of deep learning methodologies in recent years
has increased the amount of data required to train and test
the models. However, such data is often insufficient, unavailable,
or lacks suitable properties. Publicly available action recognition
datasets have been analysed, collected, and prepared to assess the
classification results in such scenarios, which provides important
guidance for use in a real-world setting.

Index Terms—activity recognition, deep learning, robustness

I. INTRODUCTION

With the increased popularity of deep machine learning,
data has gained augmented importance with many initiatives
targeting the collection and preparation of datasets. However,
in areas such as autonomous (shared) vehicles, these datasets
are scarce, may not have the necessary characteristics, and are
essentially private. This poses a problem for the research and
development of models in topics for these scenarios since large
amounts of data are needed to train robust models.

The recognition of emotions, activities, and unwanted be-
haviours plays a key role in autonomous shared vehicles [1].
Unwanted behaviour is an action or activity that can be de-
scribed as undesirable in a given context due to its potentially
harmful consequences. To this end, the set of human activities
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that can be categorised as unwanted differs according to the
considered scenario. For example, eating or drinking in a
shared car may be regarded as unwanted since it may cause
discomfort to other passengers.

This paper analyses the impact of visual noise on deep
neural network-based models for the recognition of a set of
human activities, with three main contributions. First, given
the general unavailability of datasets targeting the proposed
specific scenario, several public datasets were analysed, col-
lected, and filtered to identify segments encompassing a subset
that more closely resembles the target scenario. We studied the
impact of different variations of input information (frame rate,
resolutions, aspect ratio), both from a computational perfor-
mance and model accuracy perspective. Also, the performance
of the model under different types of visual noise, such as
cropping and occlusions, was analysed since these are quite
common in footage obtained from the inside of the vehicle
where parts of the body might not be completely visible.

The remainder of this paper is organized as follows: the
proposed methodology is presented in section II; the data and
training process are detailed in section III; the conducted ex-
periments are explained in section IV; section V presents and
discusses the results; and conclusions are drawn in section VI.

II. METHODOLOGY

This paper presents the results of a study on the robustness
of models for classifying human activity in the presence of
different types of noise. In the last years, advances in deep
learning methodologies have surpassed previous approaches
to the problem, with 3D Convolution Neural Networks (CNN)
showing enormous potential.

3D CNNs are formed of 3D convolutions, which allow
the network to process the temporal information of the input



throughout the network [2]–[11]. Before 3D networks, models
consisted of multiple streams that processed the temporal
component; however, these methods used 2D convolutions,
which meant that the temporal information was added to the
channels, sometimes limiting their performance. The output
of a 2D convolution is always an image, which means that if
the temporal component of a video is added to the channels,
then the information is more easily lost. The output of a
3D convolution, on the other hand, is a video volume that
preserves the temporal information of the input, making it
better for video classification.

The model used in this study is based on the model proposed
in [12], which follows the architecture presented in Figure 1.
It is composed of the 3D ResNet50’s convolutional encoder
blocks, followed by an average pooling layer, dropout layer,
and fully-connected layer with an input size of 2048 and an
output size equal to the number of classes. The convolutional
encoder is composed of one 3D convolutional layer containing
64 filters with a size of 7×7×7, followed by a batch normal-
isation layer and ReLU activation function. The subsequent
layers are three residual blocks of type A, four blocks of type
B, six blocks of type C, and four blocks of type D. Each
block contains three convolutional layers, with a filter size
of 1 × 1 × 1, 3 × 3 × 3, and 1 × 1 × 1, respectively. The
first two convolutional layers of each block have 64 (type A),
128 (type B), 256 (type C), or 512 filters (type D), and are
followed by a batch normalisation layer. The last convolutional
layer of each block has four times the number of filters as the
first two layers and is followed by a batch normalisation layer
and ReLU activation function. More details on the network
architecture are available on the original ResNet paper [13].

III. EXPERIMENTAL SETUP

A. Data

Given the absence of public datasets specific to the target
scenario, several datasets were analysed and filtered to identify
an adequate subset.

The following were selected for the subsequent tests:
Moments in Time [14]; HMDB51 [15]; Hollywood [16],
[17]; MSR DailyActivity3D [18]; UWA3D Multiview [19];
SBU [20].

For training the model, 21 classes from the Moments in
time were selected, considering those that are more closely
related to the scenario of autonomous shared vehicles. For
each dataset, we selected the classes that were in the set
of 21 classes used to train the model, which allowed us
to compute cross-dataset accuracies. Table I provides more
detailed information about the datasets and the corresponding
number of classes.

B. Training

The network used in this work (described in Section II) was
pre-trained on the Moments in Time dataset, and later fine-
tuned with a subset of 21 classes from the Moments in Time
dataset. These classes were chosen because they were the most
relevant for the in-vehicle scenario (see Table XI for the list of
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Fig. 1. Network architecture (adapted from [12]).

TABLE I
SUMMARY OF THE DATASETS AND CORRESPONDING CLASSES USED IN

THE EXPERIMENTS.

Dataset Number of
videos used

Number of
classes used Resolution

Moments in Time [14] 10771 21 varied
HMDB51 [15] 814 7 varied

Hollywood [16], [17] 243 3 varied
MSR DailyActivity3D [18] 60 3 640x480

UWA3D Multiview [19] 107 2 320x240
SBU [20] 100 3 640x480

classes). All videos were resized to 224× 224 resolution and
then normalised using the mean and standard deviation from
ImageNet, as these were the settings used on the pre-trained
network. This pre-processing step was applied to all videos
when training and testing the model. Since the base network
was trained with 21 classes, we chose datasets that contained
at least 2 of these 21 classes. This allowed us to test whether
there was a drop in performance when videos from datasets
other than the one it was trained on were presented to the
model.

During training, the parameters of the 3D ResNet-50 layers
were frozen, except for the final fully-connected layer. This
was done to take advantage of the pre-training on the Moments
in Time dataset [14].



The loss function used to train the model was cross-entropy,
with a batch size of 32 videos, and the Adam optimiser with
a learning rate of 1× 10−4.

IV. EXPERIMENTS

The following sub-sections describe a set of experiments
intended to assess the impact of a given type of visual noise
or input characteristics, namely: input resolution; frame rate;
obstruction of the field-of-view (FOV). The first two types
are important from two different axes: noise and efficiency.
Reducing the resolution or the frame rate means less infor-
mation to be processed which can translate to less memory
required and fewer operations (less computational complexity),
but in turn, it may imply that relevant information is ab-
sent. This is an important trade-off, especially in autonomous
(electric) vehicles, as computational resources are limited, and
power consumption is a major concern. FOV obstructions,
or occlusions, are important factors, favoured by the camera
positioning in the vehicles and reduced space.

A. Input resolution

The base model was trained on videos downsized to 224×
224 resolution; therefore, videos with a different aspect ratio
would be stretched. It is relevant to assess if the videos’
original aspect ratio would affect the performance of the
model. Note that the network accepts different resolutions as
it contains an adaptive average pooling layer. For the first
experiment, the original aspect ratio was preserved by resizing
the smaller dimension of the image to 224px and adjusting
the other dimension accordingly. In a second experiment, the
videos were inputted to the model without any resizing, i.e.,
keeping the original resolution.

The next experiment consisted of slightly adjusting the
weights of the model trained on the MMIT dataset (finetun-
ing). To accomplish this, we performed a small training session
using the HMDB51 dataset and the Hollywood dataset. The
idea was to allow the already trained network to adapt to the
new datasets in order to get a performance gain.

B. FOV obstruction

Several tests were performed to verify the performance
of the model in scenarios where some visual information is
missing, since there are situations inside the vehicle where the
field of view is obstructed, and the sensor can only see part of
the person. To simulate these scenarios, parts of the video
that may contain relevant information were cropped. More
specifically, the following cases were analysed: cropping at
the waist; cropping the right side of the body; cropping the
left side of the body.

In order to automatically calculate where to crop the frames,
the pose of each person in the frame was first calculated,
extracting the corresponding bounding box and the coordinates
of the main body parts. The pose extraction model [21] has the
advantage of calculating 3D coordinates (it also estimates the
distance from the camera). In situations where the individuals
were very close to the camera and parts of the body were

Fig. 2. Key points calculated by the pose estimation model.

Fig. 3. Frames before and after cropping.

not visible, e.g. the legs, the method randomly placed the key
points corresponding to these parts on the screen. This did
not have a negative effect as the key points used were visible
on the screen in most of the videos. Figure 2 shows the key
points predicted by this model.

Once the pose was determined, the crop of the image was
calculated. In situations where there was only one person in
the frame, calculating the crop was fairly straightforward as
only that person needed to be considered. In situations where
multiple people were visible, it was necessary to determine
which of them were in the foreground (performing the actions)
and which were in the background (irrelevant to the action
recognition task). This process took into account the size of the
largest person in the frame and assumed that all people above
a certain threshold were in the foreground. When performing a
right/left side crop, we cropped 30% of the rightmost/leftmost
person in the frame. When performing a waist crop, we



cropped at the waist of the person nearest to the bottom of
the frame. Figure 3 shows examples of different crops.

In a subsequent test, the model was fine-tuned with data
augmentation (randomly selecting right crop, left crop, waist
crop, or keeping the original for each video) to check if there
would be any performance gain. The model was fine-tuned
using the MMIT, HMDB51, and Hollywood datasets. Data
augmentation was used to avoid overfitting and improve the
performance of models by increasing the amount of data,
through the application of transformations to the original data.
In this case, the transformation applied could be too drastic
to improve accuracy, possibly removing information that is
critical to make a prediction. This could have the opposite
effect and hinder the performance of the model. To test
whether this was the case, we checked the accuracy of the
model that was fine-tuned on the Moments in Time dataset
with data augmentation, on the other datasets.

C. Input frame rate

We performed a series of tests to verify the impact that the
input frame rate had on the model’s accuracy. It is important to
know if different frame rates have or not a large impact on the
accuracy of the model, since using higher frame rates comes
with associated computational costs, which is not ideal in
situations where the computational power available is limited.
In these experiments, we trained the model on the MMIT,
HMDB51, and Hollywood datasets, with a training frame rate
of 1, 2, 4, and 8 frames per second. This resulted in 12 different
models, each trained with a different combination of dataset
and frame rate. We tested the accuracy of each of the trained
models using frame rates of 1, 2, 4, and 8 frames per second.

V. RESULTS

A. Input resolution

Table II shows the performance of the model under changes
in resolution and aspect ratio. As expected, the performance
of the model decreased slightly as it was presented with data
that did not match the resolution of the data it had been
trained with. Preserving the aspect ratio of the original input
caused a slight decrease in performance and using the original
higher resolution also did not add any benefit. The model also
showed good accuracy on the datasets it was not trained on,
demonstrating that it was able to apply what it learned from
the Moments in Time dataset to other datasets.

Table III shows the performance of the model after finetun-
ing the parameters. Performance increased considerably, since
it was better adapted to the new data, rather than relying
exceptionally on what it had previously learned from the
Moments in Time dataset. In terms of resolution and aspect
ratio changes, the results were consistent with those in Table
II and showed a slight decrease in accuracy when using the
original aspect ratio.

The use of lower resolutions can be an important advantage
in autonomous vehicle scenarios as they reduce the computa-
tional complexity or, in other words, increase the amount of
information that the model can process in the same period

TABLE II
MODEL ACCURACY WITH AND WITHOUT RESCALING AFTER TRAINING ON

MMIT

Dataset Rescaling to
224x224px (%)

Rescaling to
224px preserving
aspect ratio (%)

Original
resolution (%)

MMIT 51.49 51.23 44.62
HMDB51 69.53 67.44 66.46
Hollywood 52.67 49.79 48.56

MSRDailyAct3D 45.00 45.00 41.67
UWA3D Mult 70.09 71.03 70.09

SBU 50.00 48.00 35.00

TABLE III
MODEL ACCURACY WITH AND WITHOUT RESCALING AFTER FINE-TUNING

ON EACH DATASET.

Dataset Rescaling to
224x224px (%)

Rescaling to
224px preserving
aspect ratio (%)

Original
resolution (%)

HMDB51 78.53 77.91 77.91
Hollywood 67.35 65.31 65.31

of time. Table IV shows the number of frames processed
by the model per second, using an NVIDIA GeForce GTX
1080 GPU, depicting a significant gain. The advantage is
clear, especially considering that, as previously shown, these
resolution differences have a very small impact on model
accuracy.

B. FOV obstruction

Table V summarises the accuracy of the model after per-
forming the different crops to simulate obstructions in the
field of view. For the MMIT, HMDB51, Hollywood, and SBU
datasets, a slight drop in performance is observed due to crop-
ping. However, the MSR DailyActivity3D and the UWA3D
Multiview datasets did not suffer from such a drop. This is
likely because they contain simpler studio-like scenarios; when
we apply a crop, the action information is not completely
lost, but in many cases, the background noise is removed,
and therefore the accuracy does not decrease.

Table VI shows the performance of the model after finetun-
ing. The performance increased considerably for the HMDB51
and Hollywood datasets, but there was not much gain for the
MMIT dataset, as this was the dataset that the model was
originally trained on.

TABLE IV
PROCESSING CAPABILITIES OF THE MODEL USING DIFFERENT

RESOLUTIONS.

Resolution Frames Per Second
224x224px 1043
300x224px 757
640x480px 134



TABLE V
MODEL ACCURACY AFTER TRAINING ON MMIT.

Dataset No crop (%) Waist
crop (%)

Right
crop (%)

Left
crop (%)

MMIT 51.49 44.88 45.40 45.65
HMDB51 69.53 54.05 57.25 55.04
Hollywood 52.67 51.44 46.50 50.21

MSRDailyAct3D 45.00 71.67 56.67 63.33
UWA3D Mult 70.09 84.11 72.90 78.50

SBU 50.00 51.00 43.00 38.00

TABLE VI
MODEL ACCURACY AFTER FINE-TUNING ON EACH DATASET WITH DATA

AUGMENTATION.

Dataset No crop (%) Waist
crop (%)

Right
crop (%)

Left
crop (%)

MMIT 49.94 44.10 45.78 45.40
HMDB51 79.75 65.03 71.78 62.58
Hollywood 69.39 61.22 55.10 55.10

Comparing Tables V and VII, we notice that the fine-tuned
model performs worse on most of the datasets, which could
mean that training with the full frames yields better perfor-
mance than training with frames missing crucial information.

C. Input frame rate

Tables VIII, IX and X show the accuracy of the model using
the MMIT, HMDB51 and Hollywood dataset, respectively in
the presence of different input frame rates. We can observe
that the model appears to have the best performance when
it is trained and tested with the same frame rate. When the
training frame rate is different from the testing frame rate,
there is a slight performance decrease, which means that the
model should be trained with a frame rate similar to the frame
rate provided by the final system. We can also note that higher
frame rates generally lead to higher accuracies, as the model is
able to extract more precise information about the movement,
particularly for faster actions. The performance increase from
using a higher frame rate is not very large, which means that,
in a system with limited computational resources, it might be
advantageous to have a 2% to 5% decrease in accuracy for a
boost in computational performance.

TABLE VII
MODEL ACCURACY AFTER FINE-TUNING ON MMIT WITH DATA

AUGMENTATION.

Dataset No crop (%) Waist
crop (%)

Right
crop (%)

Left
crop (%)

MMIT 49.94 44.10 45.78 45.40
HMDB51 69.16 57.25 59.46 59.58
Hollywood 46.91 51.03 42.39 44.86

MSRDailyAct3D 51.67 71.67 53.33 60.00
UWA3D Mult 65.42 81.31 71.96 74.77

SBU 49.00 41.00 43.00 42.00

TABLE VIII
MODEL ACCURACY AFTER TRAINING WITH THE MMIT DATASET USING

VARIOUS FRAME RATES.

Training
Testing 1 fps 2 fps 4 fps 8 fps

1 fps 48.64 41.76 41.89 36.84
2 fps 50.19 51.49 52.14 50.97
4 fps 51.23 49.94 53.44 53.18
8 fps 50.84 49.94 53.31 54.22

TABLE IX
MODEL ACCURACY AFTER TRAINING WITH THE HMDB51 DATASET

USING VARIOUS FRAME RATES.

Training
Testing 1 fps 2 fps 4 fps 8 fps

1 fps 79.51 75.77 78.22 73.93
2 fps 76.87 80.80 84.60 84.60
4 fps 77.06 78.83 86.81 86.50
8 fps 73.93 78.83 84.72 85.21

Tables XI, XII and XIII show the best accuracies achieved
in every class with different frame rates when testing the
model with the MMIT, HMDB51 and Hollywood dataset,
respectively. The results also suggest that in most cases, higher
frame rates lead to higher accuracies. However, there are a few
classes that are outliers, such as singing, kissing, celebrating,
laughing, and eating; these classes generally contain slow
movements, which means that using a high frame rate does
not give the model any additional information, making them
more invariant to the used frame rate than classes with fast
movements.

VI. CONCLUSION

This paper focused on the recognition of activities in an in-
vehicle setting, measuring the performance of the model under
different scenarios. Given the unavailability of data for the
specific in-vehicle environment, we collected a set of publicly
available action recognition datasets, and chose 21 classes that
we found relevant for our scenario.

Several experiments were conducted, considering different
input frame rates, resolutions, aspect ratios, as well as obstruc-
tions of the field of view.

Results showed that the accuracy of the model decreased
slightly when training and testing on different resolutions.
Moreover, it depicted good accuracy on the datasets it was not

TABLE X
MODEL ACCURACY AFTER TRAINING WITH THE HOLLYWOOD DATASET

USING VARIOUS FRAME RATES.

Training
Testing 1 fps 2 fps 4 fps 8 fps

1 fps 67.35 59.18 61.22 51.02
2 fps 53.06 63.27 63.27 67.35
4 fps 63.27 65.31 65.31 65.31
8 fps 61.22 51.02 51.02 75.51



TABLE XI
THE BEST ACCURACIES ACHIEVED IN EVERY CLASS OF THE MMIT

DATASET USING DIFFERENT FRAME RATES.

Class 1 fps 2 fps 4 fps 8 fps
fighting 45.00 75.00 60.00 55.00

punching 75.68 75.67 83.78 83.78
pushing 46.15 46.15 38.46 53.85
sitting 30.00 26.67 30.00 36.67

sleeping 56.84 49.47 60.00 53.68
coughing 21.43 28.57 21.43 35.71
singing 76.17 73.36 71.50 73.36

speaking 57.14 53.57 57.14 64.29
discussing 29.16 26.38 33.33 33.33

pulling 45.45 59.09 54.55 63.64
slapping 25.80 32.26 35.48 25.81
hugging 82.35 82.35 88.23 82.35
kissing 9.09 27.27 27.27 18.18
reading 14.29 14.28 28.57 28.57

telephoning 45.45 45.45 54.55 45.45
studying 64.71 58.82 82.35 58.82

socializing 15.00 20.00 20.00 25.00
resting 40.00 53.33 66.67 53.33

celebrating 70.83 70.83 70.83 66.66
laughing 20.00 20.00 20.00 20.00

eating 57.14 71.43 57.14 57.14

TABLE XII
THE BEST ACCURACIES ACHIEVED IN EVERY CLASS OF THE HMDB51

DATASET USING DIFFERENT FRAME RATES.

Class 1 fps 2 fps 4 fps 8 fps
punching 73.07 84.61 79.23 81.54
pushing 92.59 91.85 92.59 92.59
speaking 67.19 67.19 77.19 83.75
hugging 84.29 95.24 96.67 100.00
kissing 96.66 100.00 98.67 92.67

laughing 90.83 90.00 94.58 92.08
eating 71.66 78.33 87.77 87.78

trained on. After fine-tuning the model with other datasets,
a considerable increase in accuracy was observed, since the
model adapted to the new data. Measuring the computation
time it was possible to conclude that using lower resolutions
enables a significant increase in the number of frames that the
model can process each second with only a minor impact on
accuracy.

Removing part of the visual information caused a slight
decrease in performance for most datasets. Fine tuning the
model using data augmented with different types of cropping
overall resulted in worse performance, suggesting that training
with full frames is better than training with frames missing

TABLE XIII
THE BEST ACCURACIES ACHIEVED IN EVERY CLASS OF THE HOLLYWOOD

DATASET USING DIFFERENT FRAME RATES.

Class 1 fps 2 fps 4 fps 8 fps
hugging 45.45 9.09 36.36 27.27
kissing 87.50 95.83 95.83 100.00

telephoning 71.43 57.14 71.43 85.71

crucial information.
Using different frame rates in training and testing could

be useful. However, the results indicate that the model had
the highest accuracy when training and testing on the same
frame rates. This suggests that the model should be trained
with a frame rate similar to the frame rate provided by the
final system. We can see that higher frame rates generally
lead to higher accuracy, since the model is presented with
more precise information about the movement. The increase
in accuracy from using higher frame rates is not very high,
therefore using lower frame rates might be advantageous in
systems with limited computational resources. Additionally,
we can see that classes that contain slow movements (e.g.
singing, kissing) do not see performance gains when using
higher frame rates, as the model is not being presented with
any additional information.
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