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Abstract

The literature on biometric recognition shows a chasm between the meth-
ods focused on high performance and the works focused on template se-
curity. To build a connection between these two worlds, this work de-
scribes the Secure Triplet Loss to achieve template cancellability within
end-to-end deep learning models. Evaluated for off-the-person electro-
cardiogram authentication, the proposed methodology resulted in effec-
tive cancellability, irreversibility, and improved performance. Despite the
high linkability, this shows that it is possible to combine the high perfor-
mance of deep learning with adequate template security.

1 Introduction

As biometric recognition technologies quickly conquer a place of rele-
vance in our society, the duality of performance versus security is yet to
be adequately addressed [11]. This duality relates to how the research
field of biometrics is currently composed of two ‘worlds’ apart, and while
both work towards the same goal of improving human recognition sys-
tems, they have been following largely unconnected and uncoordinated
research lines.

On the one hand, a substantial part of the literature in biometrics is fo-
cused on performance, following well-known and successful methodolo-
gies in computer vision tasks. These use mostly end-to-end convolutional
neural networks (CNNs) that consider biometric recognition as a general
classification problem [14], and have achieved outstanding levels of accu-
racy and robustness in challenging scenarios. However, since stored data
protection is rarely addressed, these algorithms are incomplete and unfit
for real biometric applications.

On the other hand, several algorithms have been proposed to protect
personal data stored in biometric systems [5, 8]. These commonly use
cryptography and information theory concepts to ensure stored biomet-
ric templates verify the essential properties of irreversibility, cancellabil-
ity, and non-linkability. Nevertheless, being based on separate processes
means these methodologies are not applicable to state-of-the-art end-to-
end methods without significant negative impacts on performance. This
is a relevant problem, since many biometric traits (including the electro-
cardiogram, ECG) rely on end-to-end CNNs to offer acceptable accuracy
and robustness to challenging scenarios [9].

This work aims to bring the two aforementioned research lines to-
gether by answering the following question: if deep learning models have
successfully learnt so many different things, why not template security?
The proposed method is an adaptation of the triplet loss [2], which aims
to achieve template irreversibility and cancellability on end-to-end CNNs
while preserving recognition accuracy. This methodology is used to train
a competitive end-to-end model for ECG biometric recognition [9] and
evaluated on the off-the-person UofTDB database [13]. Thus, this work
addresses the challenge of template protection on end-to-end networks for
ECG and biometrics in general, contributing towards a synergy between
performance and security in biometric recognition.

2 The Secure Triplet Loss

The triplet loss [2] is used to train models to determine whether or not two
samples belong to the same class [3, 4, 9]. The model receives a triplet of
inputs: an anchor (xA of class iA), a positive sample (xP of class iP = iA),
and a negative sample (xN of class iN 6= iA). Considering the case of
biometric recognition, the samples are biometric trait measurements and
the classes are identities.

The model will output an embedding y for each input (e.g., yA =
f (xA) for the anchor). Two embeddings can be compared through a met-
ric of distance or dissimilarity d(y1,y2) which can be used to determine if
the respective inputs belong to the same class. The model can be trained
through the triplet loss

l = max(0,α +d(yA,yP)−d(yA,yN)) , (1)

which will promote the maximisation of d(yA,yN) and the minimisation
of d(yA,yP), grouping samples of the same class into compact clusters, at
least α from other classes in the embedding space.

Although the triplet loss has been successfully applied to several pat-
tern recognition problems, including biometric authentication, it does not
address the important issue of template cancellability. Typically, this is
performed separately, binding a subject-specific key k with the template
after it is generated: changing k invalidates any compromised templates
bound with other keys.

Here, we adapt the triplet loss to perform subject key binding with
the template within the end-to-end model. Besides the biometric samples
xA, xP, and xN , the model will receive two keys, k1 and k2. Sample xA is
bound with k1 and xP and xN are bound with each of the two keys, result-
ing in five embeddings: yA = f (xA,k1), yP1 = f (xP,k1), yP2 = f (xP,k2),
yN1 = f (xN ,k1), yN2 = f (xN ,k2). From these, four distances are com-
puted: dSP = d(yA,yP1) (with matching identities and keys), dDP =
d(yA,yP2) (with matching identities but different keys), dSN = d(yA,yN1)
(with different identities but matching keys), and dDN = d(yA,yN2) (with
non-matching identities and keys).

Since dSP, which corresponds to matching identities and keys, should
be minimised, while the others should be maximised, the Secure Triplet
Loss is computed through:

l = max(0,α +dSP−min({dSN ,dDP,dDN})) . (2)

As with the triplet loss, α will enforce a margin between positive and
negative distances. By minimising the loss in Eq. (2), the model learns to
deal with the intrasubject and intersubject variability of the biometric trait
and becomes able to recognise when the keys do not match, even if the
identity is the same. Hence, if the stored templates become compromised,
they can easily be invalidated through a key change.

3 Experimental Settings

The proposed training methodology was evaluated to off-the-person
ECG-based biometric authentication. The University of Toronto ECG
Database (UofTDB) [13], including 1019 identities, was used. Signals
were divided into five-second segments. Data from the last 100 subjects
were used for training (90 000 triplets) and validation (10 000 triplets),
while the data from the remaining 918 subjects were reserved for testing
(10 000 triplets). Keys were randomly generated as unidimensional arrays
of 100 binary values.

The authentication model is adapted from [9] (see Fig. 1). Samples
are bound with keys before the first dense layer. The vector of flattened
feature maps (s(x)) is concatenated with a key k (after its normalisation to
unit l2 norm). The last dense layer outputs the respective representation
y= f (s(x),k), which is then used in dissimilarity score computation using
the Euclidean and normalised Euclidean distance, respectively, for train-
ing and testing. The model was trained using the Adam optimizer with an
initial learning rate of 0.0001, for a maximum of 500 epochs, with early
stopping based on validation loss (patience of 20 epochs).
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Figure 1: Architecture of the model trained for ECG-based authentication.

4 Results and Discussion

After training, the model’s authentication performance was evaluated
through the analysis of false acceptance (FAR), rejection rates (FRR), and
equal error rates (EER) [10]. As presented in Fig. 2, the model trained
with the Secure Triplet Loss achieved lower EER than with the original
triplet loss (10.63% versus 12.55%). This is an important aspect of the
proposed method, since security measures generally lead to a five-fold
average increase in authentication error [8]. The proposed method is able
to achieve this by retaining the capabilities of end-to-end networks and
optimising for accuracy and cancellability simultaneously.

Figure 2: Receiver-operating characteristic curves of the model trained
with the Secure Triplet Loss and with the original triplet loss.

The security of the templates output by the model was evaluated using
the standard literature measures of privacy leakage rate, secrecy leakage,
and secret key rate, through nearest-neighbour entropy estimation meth-
ods [1, 6, 7]. The model offered near-perfect privacy rate results, which
means the biometric templates are irreversible as desired. This very use-
ful property may be a consequence of using CNNs, which have been ob-
served to present minimal mutual information between inputs and outputs
when appropriately optimised [12]. Secrecy leakage also rendered perfect
result (0) which may also be related to the nature of deep neural networks.
At last, the proposed method offered 103.73 bits of secret key rate (out-
put entropy) versus 14.20 bits for the original triplet loss, which means it
will be harder to successfully attack the model trained with the proposed
method.
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Figure 3: Results of the cancellability (a) and linkability (b) evaluation.

Regarding template cancellability, Singular Value Decomposition
(SVD) was used to visualise the template distribution in the output space.
Fig. 3 (a) shows the Secure Triplet Loss promotes the clustering of class
samples when keys match. However, when the key is changed, the cluster
is shifted on the output space in order to distance itself from (and ef-
fectively invalidate) the templates corresponding to cancelled keys. At
last, template non-linkability was evaluated as established by Gomez-
Barrero et al. [5] (see Fig. 3 (b)). The proposed secure triplet loss model
offered Dsys

↔ = 0.67, making it semi- to fully linkable. This is the main
shortcoming of the Secure Triplet Loss, as it would be relatively easy for
an attacker to discover whether two samples with different keys belong to
the same subject. The desired behaviour would be for dDP, dDN , and dSN
to assume similar values greater than dSP. Future research endeavours
should focus on adapting the network to avoid template linkability.

5 Conclusion

This work proposes the Secure Triplet Loss, an adaptation of the triplet
loss to promote biometric template cancellability in end-to-end deep mod-
els. Biometric templates are bound with subject-specific keys within the
end-to-end model, without separate processes, and can be easily cancelled
through a key change. The proposed loss proved successful when evalu-
ated for ECG-based authentication, offering cancellability and improved
performance.

While cancellability and irreversibility have been achieved, an impor-
tant shortcoming regarding template linkability has been unveiled. Hence,
further efforts should be devoted to achieve non-linkability alongside can-
cellability. Nevertheless, this study has shown it is possible to achieve
template security within end-to-end deep biometric models, paving the
path to a synergy between performance and security in biometrics.
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