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Abstract—Although deep learning is being widely adopted for
every topic in pattern recognition, its use for secure and cance-
lable biometrics is currently reserved for feature extraction and
biometric data preprocessing, limiting achievable performance.
In this paper, we propose a novel formulation of the triplet
loss methodology, designated as secure triplet loss, that enables
biometric template cancelability with end-to-end convolutional
neural networks, using easily changeable keys. Trained and
evaluated for electrocardiogram-based biometrics, the network
revealed easy to optimize using the modified triplet loss and
achieved superior performance when compared with the state-
of-the-art (10.63% equal error rate with data from 918 subjects
of the UofTDB database). Additionally, it ensured biometric
template security and effective template cancelability. Although
further efforts are needed to avoid template linkability, the
proposed secure triplet loss shows promise in template cancela-
bility and non-invertibility for biometric recognition while taking
advantage of the full power of convolutional neural networks.

I. INTRODUCTION

Biometric recognition systems are quickly replacing tradi-
tional authentication and identity control systems in almost
all contexts and applications. While traditional systems are at
risk when the user forgets, loses, or shares the credentials,
biometric systems do not require the user to know or carry
any external credentials, as they perform recognition using
intrinsic characteristics such as facial features, fingerprints,
iris, voice characteristics, or physiological signals (such as the
electrocardiogram) [1]–[3].

However, when a traditional access control system is at-
tacked and the contents of its database are accessed by an
intruder, the only things that become compromised are the
access credentials, which can easily be changed to avoid
greater losses. On an attacked biometric system, what becomes
compromised is a part of the individual, difficult to change,
as the database stores intrinsic personal data from each of the
users. Hence, the development of biometric systems requires
redoubled efforts to ensure the security of the stored biometric
data [2], [4].
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Cryptography and information theory concepts can be used
for data encryption and protection in biometric systems. How-
ever, biometric systems require special methods, adapted to
adequately deal with the variability of the biometric traits
and measurements [4], [5]. These methods need to ensure no
positive matches occur between signals of different subjects
while avoiding negative matches between samples of the same
subject, despite the intrasubject trait variability.

Besides accounting for trait variability, data protection
methods in biometric systems need to verify three other
properties. First, the stored templates need to be easily and
effectively cancelable if these become compromised (this
property is called cancelability or revokability) [6], [7]. Ad-
ditionally, the transformation from trait measurements to tem-
plates should be as close to irreversible as possible, as it
should be impossible or infeasible for attackers to retrieve
an approximation of the original trait using a compromised
template (non-invertibility property) [4], [5]. Also, it should
be hard for an attacker to know whether two samples from dif-
ferent systems belong to the same individual (non-linkability
property) [8].

Several methods have been proposed for securing biometric
templates [8]–[14]. Most approaches are based on salting,
biohashing, or cryptographic protection methods [5]. Although
some methods have been proposed for secure biometrics using
deep learning [15], [16], none are end-to-end as they require
separate decision processes able to deal with hashed or key-
transformed templates. Furthermore, the additional separate
processes of template protection often influence negatively the
performance of the biometric algorithms [4].

In this work, we propose an adaptation of the triplet loss
technique that enables training of end-to-end convolutional
neural networks for secure biometric authentication. The pro-
posed method is able to safeguard the biometric templates
using binary keys while dismissing any additional process
beyond the deep network. Hence, it allows one to take full
advantage of the capabilities of end-to-end deep neural net-
works while still ensuring the security of the stored biometric
data.

The proposed methodology was implemented and evaluated
for electrocardiogram-based biometric authentication, on the
University of Toronto ECG Database. End-to-end convolu-
tional neural networks have shown improved performance
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Fig. 1. Comparison between the model training schemas of the proposed
secure triplet loss method (right) and the original triplet loss (left).

in off-the-person ECG-based biometrics [17], [18]. Although
the literature includes some work in ECG template protec-
tion [19]–[21], no approaches have been formulated for end-to-
end networks. Hence, this work evaluated the effect of the in-
clusion of template security measures in such models. Besides
the authentication performance, the experiments also assess
the proposed method’s capabilities in template cancelability,
non-invertibility, and non-linkability.

II. SECURE TRIPLET LOSS

The triplet loss [22] has been widely used in deep learning
to train networks to accurately determine whether or not two
samples belong to the same class [18], [23], [24]. During
training, such networks receive three inputs (a triplet), in
parallel: one is the anchor (xA, the reference with identity
iA), the second is the positive sample (xP , with identity
iP = iA), and the third is the negative sample (xN , with
identity iN 6= iA). In biometrics, triplets are groups of three
biometric trait measurements (images or signals): the anchor
and positive inputs correspond to the same individual, unlike
the negative input.

For each input, the network will output a representation:
e. g., for the anchor, yA = f(xA). The three representations
are then compared using a measure of distance or dissimilarity
d(y1, y2), and the network is optimized through the minimiza-
tion of the triplet loss function:

l = max [0, α+ d(yA, yP )− d(yA, yN )] , (1)

which lead representations of the same class to be more
similar than those of different classes, maximizing d(yA, yN )
and minimizing d(yA, yP ). The loss also aims to enforce a
minimum margin α between the two distances.

This is a generally successful strategy when training neural
networks for biometric authentication (verifying if the identi-
ties of a stored template and a current biometric measurement
match). However, it does not address the important issue of
security in biometrics, especially the topic of cancelability.

Hence, the proposed training method modifies the triplet
loss to make the final sample representations cancelable (as
illustrated in Fig. 1). Besides the triplet inputs (xA, xP , and

xN ), the network will also receive two different keys (k1, k2)
that are bound with the inputs by the network itself.

Unlike the original triplet loss, xP and xN are processed
by the network twice. First they will be combined with k1
and then with k2. The anchor xA is only bound with k1.
Thus, five representations will be obtained: yA = f(xA, k1),
yP1 = f(xP , k1), yP2 = f(xP , k2), yN1 = f(xN , k1),
yN2 = f(xN , k2). From these, four distances are computed:
dSP = d(yA, yP1) (with matching identities and keys),
dDP = d(yA, yP2) (with matching identities but differ-
ent keys), dSN = d(yA, yN1) (with different identities but
matching keys), and dDN = d(yA, yN2) (with non-matching
identities and keys).

The objective is to minimize dSP , when both the identi-
ties and the keys match, and maximize the remaining three
distances. Hence, the loss is computed through:

l = max (0, α+ dSP − dn) , (2)

where dn will result of the combination of all three dis-
tances to be maximized. One option is to set dn =
min({dSN , dDP , dDN}), with the three distances to be max-
imized being considered equally relevant. This results in:

l = max [0, α+ dSP −min({dSN , dDP , dDN})] . (3)

Alternatively, one can opt for a loss formulation where dn
is randomly chosen randomly among {dSN , dDP , dDN}:

l = max (0, α+ dSP − dn) , dn ∈ {dSN , dDP , dDN}. (4)

Choosing only one of these three distances means inference
is only needed for three input combinations (xA with k1, xP
with k1, and the sample-key pair corresponding to the chosen
dn), hastening the training process. The random choice of dn
for each triplet ensures the balanced optimization of the model
according to all three distances.

As with triplet loss, α will enforce a margin between
positive and negative distances. In this case, the loss involves
four distances, since it also takes into account whether or not
the keys match. By minimizing the loss in either Eq. (3) or
Eq. (4), the network learns to deal with the intrasubject and
intersubject variability of the biometric trait. More importantly,
it learns to recognize when the keys do not match, even if the
identity is the same. Hence, if the stored templates become
compromised, they can easily be invalidated through a key
change.

III. EXPERIMENTAL SETTINGS

The proposed training methodology was applied to off-
the-person electrocardiogram-based biometric authentication,
using signals from the University of Toronto ECG Database
(UofTDB) [25]. This database includes electrocardiogram
(ECG) recordings from 1019 individuals, using dry electrodes
on the fingers at 200 Hz sampling frequency, on up to six
sessions over six months, and up to five subject positions.

Five-second segments (1000 samples at 200 Hz sampling
frequency) from the last 100 subjects in the database were used
for training, while the data from the remaining 918 subjects
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Fig. 2. Architecture of the model trained for ECG-based authentication.

were reserved for testing. The anchors were taken from the
first 30 seconds of the recording of each subject, while the
positive and negative samples were drawn randomly among
the remaining data from the same individual or a different
subject, respectively.

For training, 90 000 triplets were generated, as well as
10 000 for validation, and another 10 000 for testing. The
networks trained with the original and modified triplet loss
functions used the same sets of triplets. Pairs of different
arrays, each with 100 binary values, were randomly generated
to serve as keys.

The binding of an input and a key happened before the
first dense layer, after the input underwent processing in
all convolutional layers. Before being received by the first
dense layer, the vector of flattened feature maps (s(x)) was
concatenated with the key k (after its normalization to unit
l2 norm). The vector resulting from the concatenation of s(x)
and k is used by the dense layers to obtain the respective
representation y = f(s(x), k).

The network was implemented on Python using Keras
with Tensorflow as backend. Its architecture is depicted in
Fig. 2. Euclidean and normalized Euclidean distance [26]
were used as distance measures, respectively, for training and
testing in authentication. The model was trained using the
Adam optimizer with an initial learning rate of 0.0001, for
a maximum of 500 epochs, with early stopping based on
validation loss (patience of 20 epochs).

The security of the method was evaluated, using the privacy
leakage rate, the secrecy leakage, and the secret key rate. The
privacy leakage rate is used to measure non-invertibility, and
can be computed through the expression:

H(X|Y )

H(X)
= 1− I(X;Y )

H(X)
, (5)

where X is the input biometric measurement, Y is the output
of the model, H(X) denotes the entropy of X , H(X|Y )
denotes the conditional entropy of X given Y , and I(X;Y )
denotes the mutual information between X and Y . The privacy
leakage rate should be as high as possible: even when one has
all knowledge of Y , obtaining information on X should be
impossible.

The secrecy leakage measures the mutual information be-
tween the stored template Y and the key K, through the
expression I(Y ;K). The keys are public, unlike the templates,
so they should reveal as little information as possible on the
templates. Hence, the secrecy leakage should be close to zero.
Finally, the secret key rate measures the uncertainty in the

model output Y , and is computed through H(Y ). The higher
it is, the more variability the output presents, and the harder
it is to successfully attack the biometric system.

These require the computation of some information theoret-
ical measures, such as entropy and mutual information. This
is very difficult in biometrics, due to the high dimensional-
ity of the inputs and the feature sets and their variability.
Hence, the viable option is to estimate those measures. In
this work, entropy and mutual information were estimated
using the methods proposed in [27] and in [28], respectively,
through their Python implementation described in [29]. These
methods, based on nearest neighbor statistics, were shown
to be more accurate than the alternatives [30]. Although the
original papers propose setting k ∈ [2, 4], this parameter was
adjusted to k = 10 to avoid errors regarding negative mutual
information estimation results.

The template linkability analysis followed the method de-
scribed by Gomez-Barrero et al. [8]. The aforementioned test
samples were paired into mated (different biometric samples
from the same identity with different keys) and non-mated
instances (different identities and keys). These have been
used to compute p(s|Hm) and p(s|Hnm): the probability
density functions of the dissimilarity score s given the in-
stances are, respectively, mated (hypothesis Hm) or non-
mated (hypothesis Hnm). From the likelihood ratio LR(s) =
p(s|Hm)/p(s|Hnm), D↔(s) and the Dsys

↔ linkability metric
were computed (Eq. (6) and Eq. (7), respecively).

D↔(s) =

0, if LR(s) ≤ 1

2

((
1 + e−(LR(s)−1)

)−1

− 1
2

)
, if LR(s) > 1

(6)

Dsys
↔ =

∫ smax

smin

D↔(s) · p(s|Hm) ds (7)

IV. RESULTS AND DISCUSSION

After training the network using the original and the modi-
fied version of the triplet loss (see Fig. 3 for the evolution of
loss over training time), the authentication performance was
evaluated through the analysis of false acceptance (FAR) and
rejection rates (FRR), receiver-operating characteristic curves
(ROC, presented in Fig. 4), and equal error rates (EER).

The proposed method achieved 10.63% EER, versus
12.55% EER for the original triplet loss. These results stand
in stark contrast to those reported in the literature, which
point to a five-fold average increase in authentication error
when security measures are included [4]. The advantage of the
proposed method likely results from using an end-to-end deep
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Fig. 3. Train and validation loss evolution over training epochs for the network
trained with the modified (top) and original triplet loss (bottom).

neural network, thus taking full advantage of their enhanced
robustness to biometric variability.

With the loss formulation in Eq. (4), the trained model
offered 11.96% EER. As expected, there has been a small
performance decline relative to the formulation in Eq. (3), but
the error is still lower than that of the model trained with
the original triplet loss. Hence, the more efficient formulation
can be used in circumstances where time is limited and small
performance losses are admissible. For brevity, all results
presented below refer to the formulation in Eq. (3).

These results can also be compared with the performance
offered by state-of-the-art methods, implemented and tested in
the same conditions in [18]. Despite the inclusion of security
measures, the proposed methodology improves over the results
of all implemented methods, including the end-to-end models
trained with the original triplet loss (13.93% EER) or using
transfer learning from identification (13.70% EER).

Regarding the information-theoretical security measures, the
network offered the same, approximately perfect privacy rate
result when trained with either the original or the modified
triplet loss. This may be linked with claims in the liter-
ature that, for appropriately optimized convolutional neural
networks, the mutual information between inputs and outputs
is minimized. When optimized, internal representations com-
press the input and maintain only the information needed for
the task at hand [31]. This makes CNN models very useful to
ensure non-invertibility for biometric templates.

The analysis of secrecy leakage for the proposed method
rendered similar results to the privacy leakage rate, with a
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Fig. 4. Comparison between the ROC curves of the model trained with the
proposed methodology (in blue) and with the original triplet loss (in orange).

perfect score of zero. Once again, this may be related to the
nature of deep neural networks but is, nevertheless, highly
beneficial for biometric security. As for secret key rates, the
proposed method proved superior to the original triplet loss,
with 103.73 bits of output entropy versus 14.20 bits. This
means the secure method proposed in this paper should be
harder to successfully attack than a network trained with the
original triplet loss formulation.

Using Singular Value Decomposition, some plots of samples
in 2D projections were analyzed to study variability and
separability in the network outputs for different subjects and
different keys (see Fig. 5). In these plots, it is easy to
see that triplet loss improves class separability, as intended,
making classes more compact and clustered. Using the secure
modification of triplet loss proposed in this paper, however, the
classes become more scrambled as, even though the identities
match, the keys are different. This is a useful property for the
sake of template cancelability.

One final two-dimensional projection, in Fig. 6, shows the
effects on the separability of different keys on data of the same
subjects and the same matching keys on data from different
subjects. It is visible that data from a given subject shift
when the key is changed. In the case illustrated by the figure,
the clusters of each subject data suffer a shift towards the
bottom-right, which would be sufficient to invalidate templates
corresponding to canceled keys.

On the other hand, one might argue that separability would
be very weak if every enrolled individual had the same key,
as the network might rely on keys for its identity decision.
However, the loss formulation guides the network training to
avoid such behavior, and the equal error rate result, which
addresses this specific aspect, is lower than when using the
original triplet loss. In fact, considering the data used, the
proposed method exceeds the state-of-the-art in terms of EER
(see [18]). Moreover, as keys are randomly generated binary
arrays, one can force keys to be different for each subject, or
increase their length to make such issue even more unlikely to
happen. It would even be possible to force new subject keys to
be sufficiently different from past keys, to ensure a sufficiently
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large shift and an effective cancellation of past templates.
At last, regarding the linkability of templates across dif-

ferent systems, the results of the experiments are presented
in Fig. 7. The proposed secure triplet loss model offered
Dsys

↔ = 0.67. Comparing this value and the D↔(s) curve
with the guidelines and examples offered in [8], the method
is between semi-linkable and fully linkable. This means it
would be relatively easy for an attacker to discover whether
two samples with different keys belong to the same subject.
This is an important shortcoming of the method that stands
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Fig. 6. Scatter plot of the network outputs from samples of different subjects
(in different colours) binded with two different keys.
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in stark contrast with the promising recognition performance,
cancelability, and non-invertibility results presented above.

The end-to-end model apparently learned a balance between
the weights of identities and keys in the output dissimilarity
scores. However, non-linkability would require it to disregard
identity when keys don’t match, in order to offer the similar
dissimilarity scores in these cases regardless of whether the
identities match. Identity should only influence the dissimilar-
ity score when the keys of both templates correspond. Future
research endeavors should focus on adapting the network to
promote this desired behavior and avoid template linkability.

V. CONCLUSION

This work proposes an adaptation of the widely used triplet
loss training scheme to ensure biometric template security
in convolutional neural networks. The proposed method is
applicable to end-to-end models, which dismiss any separate
processes and take full advantage of the capabilities of deep
learning. Template cancelability is achieved through the com-
bination of the templates with easily changeable keys.

When tested for ECG-based biometric authentication, the
proposed method revealed several advantages over the original
triplet loss. Template cancelability is ensured and easy to



achieve by changing the respective key. Contrarily to the great
majority of existing template security methods, the proposed
methodology does not degrade biometric performance. In fact,
performance results are improved over the use of the original
triplet loss.

The privacy leakage rate is approximately perfect, which
means it is almost impossible to retrieve the original signal
given the stored template. Finally, the secret key rate is high,
even with low dimensionality of the stored templates (100
features), which makes successful attacks more difficult.

Nevertheless, some limitations remain, especially regarding
non-linkability. The results of the linkability analysis show
the greatest shortcoming of the proposed method. It should
be adapted to make it harder for attackers to know whether
two templates with different keys belong to the same person.
Furthermore, although the proposed method exceeds the state-
of-the-art in ECG biometrics, the equal error rate results
obtained with ECG are still far above those offered by other
biometric traits such as face or fingerprints.

In the future, the proposed method should first be adapted
to give appropriate weight to the keys and identities on the
dissimilarity scores, according to whether or not the keys
match. The training loss could be further adapted so that the
network is specifically optimized to avoid template linkability.
Then, the proposed method could be applied and evaluated for
other biometric traits, to assess its wider applicability, security,
and performance advantages.
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