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Explaining ECG Biometrics: Is It All In The QRS?

João Ribeiro Pinto1 and Jaime S. Cardoso1

Abstract: The literature seems to indicate that the QRS complex is the most important component
of the electrocardiogram (ECG) for biometrics. To verify this claim, we use interpretability tools
to explain how a convolutional neural network uses ECG signals to identify people, using on-the-
person (PTB) and off-the-person (UofTDB) signals. While the QRS complex appears indeed to be
a key feature on ECG biometrics, especially with cleaner signals, results indicate that, for larger
populations in off-the-person settings, the QRS shares relevance with other heartbeat components,
which it is essential to locate. These insights indicate that avoiding excessive focus on the QRS
complex, using decision explanations during training, could be useful for model regularisation.
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1 Introduction

Throughout the past twenty years, research on biometrics based in the electrocardiogram

(ECG) has largely been a success story [PCL18]. After successful proofs-of-concept in

cleaner medical signals (on-the-person), the focus is quickly shifting to acquisitions in

more realistic scenarios (off-the-person). Deep learning approaches [La18, Lu18, PCL19,

PC19, Ha20] have been essential in dealing with the increased noise and variability in

off-the-person settings, despite the performance and robustness issues that still hinder ap-

plication in real scenarios.

However, deep learning decisions are obscure: unlike traditional methods based on fiducial

features, we don’t know what information the model uses to distinguish people. One can

assume that the models look mainly to the QRS, since it is the most stable part of the ECG

in the face of noise and variability [Sc00, HUvO01]. Several methods have thus focused

on QRS complexes for ECG biometrics [Wa16, La18], but this practice has become un-

common in recent works. This indicates the true role of this waveform complex in identity

discrimination is still to be adequately recognised.

Currently, pattern recognition researchers understand the importance of knowing what

specific information is relevant for their models to reach decisions. Retreating to easily

explainable traditional models (such as decision trees) is often unacceptable due to their

performance limitations. Hence, various interpretability tools are being developed to peek

into the inner workings of deep networks applied to diverse tasks [CPC19, SFC19, Se20].

This work uses, for the first time in the literature, such interpretability tools on a deep ECG

biometric model, to understand what parts of the ECG are most useful for automatic human
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identification. The model is a competitive state-of-the-art method [PCL19, PC19] applied

for ECG-based identification in data subsets with diverse signal quality and number of

identities. With this, we aim to assert the importance of the QRS and other waveforms

for ECG biometrics and discuss future possibilities as this topic evolves towards more

challenging and realistic scenarios. Additionally, we propose an intuitive way to visualise

interpretations for unidimensional signals. The code and additional results are available

online2.

Besides this introduction, this paper presents some fundamental concepts on the ECG as a

biometric trait, in section 2. The biometric identification model, the interpretability tools,

and the visualisation method are described in section 3, and the experimental settings are

detailed in section 4. Section 5 presents the obtained results and their discussion, and

section 6 states the conclusions drawn from this work.

2 The Electrocardiogram as a Biometric Trait

The heart is composed of a muscle, the myocardium, that is responsible for its contraction

and allows it to fulfil its purpose of pumping blood throughout the body [Ta09]. The my-

ocardium contracts in response to depolarisation phenomena started by the atrioventricular

node located on the interatrial septum. The waves of depolarisation that spread precisely

across the heart are small electrical currents that can be measured using electrodes, result-

ing in the electrocardiogram (ECG) [MH13, Ta09].

Since the operation of the heart is a repetition of a sequence of phenomena, the ECG is

approximately a cyclical repetition of a set of waveforms (P, Q, R, S, and T) that corre-

sponds to a heartbeat (see Fig. 1) [MH13, PCL18]. The P wave is the first waveform and

corresponds to the depolarisation of the myocardium cells in the atria. The Q, R, and S

waveforms are commonly jointly considered as the QRS complex, which corresponds to

the repolarisation of the atria and the depolarisation of the ventricles. The T wave corre-

sponds to the repolarisation of the ventricles. This last wave is in some cases followed by

a shorter waveform, the U wave, whose causes are still unclear [Ri08].

As a measurement of the electrical currents spread across the heart, the ECG signals will

reflect the geometry of this organ. For example, larger hearts, with more cells to depolarise

and repolarise, will result in ECG waveforms with larger amplitudes. Higher or lower basal

heart rates will also result in different signal morphologies. Since heart geometry and basal

heart rates vary across individuals, this intersubject variability is what makes the ECG

sufficiently unique to be used in biometric recognition [HUvO01, vOHU00].

However, the ECG signals are also susceptible to intrasubject variability factors. Noise

sources during acquisition, the short-term and long-term effects of exercise, emotional

states, stress, drowsiness, and fatigue are some of the factors that reflect mainly in the heart

rate variability, changing the morphology of the P-R and S-T segments [Sc00, ABH12].

These are the sources of uncertainty that hinder the use of the ECG as a biometric trait.

2 xECG Repository. Available on: https://github.com/jtrpinto/xECG.
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Fig. 1: Illustration of the ECG waveforms on a sample PTB signal segment.

While these are largely controlled on medical or on-the-person settings (where the subject

is at rest, laying down, and signals are acquired using several high-quality gel electrodes),

their effects are dominant for realistic off-the-person signals (acquired using few dry elec-

trodes on the hands, during common daily activities) [Pi17, PCL18, PC19].

When compared with the P and T waves, the QRS corresponds to a larger polarisation

event over a shorter period. In practice, this makes the QRS more dominant over noise and

intrasubject variability than the other ECG waveforms [Pi17, PCL18]. Hence, the QRS is

considered more stable over time and across variable conditions, which makes it better

suited for biometric recognition.

Despite this, it is still unclear how much identity information is carried by the QRS com-

plex compared to the other waveforms, and whether it is enough for an accurate and ro-

bust biometric recognition system. Studies on ECG-based biometric identification have

shown it is possible to distinguish small sets of individuals in on-the-person settings using

only the QRS complex or QRS fiducial amplitude and time measurements [Wa16, La18].

Nevertheless, this practice is becoming uncommon as research evolves towards realistic

off-the-person signals and larger databases.

This denotes that the sole use of the QRS may not be adequate for off-the-person settings,

or the individual information carried by the QRS may not be enough to distinguish in-

dividuals in large populations. This work aimed to address these doubts through a study

on the role and relevance of the QRS and the other waveforms on ECG-based biometric

identification. Interpretability tools are used to assess which parts of the ECG are more rel-

evant to the decisions of an end-to-end identification model [PCL19], with on-the-person

and off-the-person signals and data subsets with a varying number of identities.

3 Methodology

3.1 Biometric Identification Model

The biometric model for identification followed the architecture proposed by Pinto et

al. [PCL19], which has attained state-of-the-art results in off-the-person settings for both

identification and, later, authentication [PC19]. The model (see Fig. 2) receives five-second

blindly segmented ECG signals and outputs probabilities for each of the N identities con-

sidered. Finding the highest probability score allows us to assign the respective identity to

the input signal.
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Fig. 2: Architecture of the biometric identification model

The model consists of an end-to-end 1D convolutional neural network (CNN) with four

convolutional layers (with 1 × 5 filters, two layers with 24 followed by two with 36),

followed by ReLU activation. Neighbouring convolutional layers are separated by 1× 5

max-pooling layers. The last convolutional layer is followed by two fully-connected layers

(100 neurons with ReLU and N neurons with softmax activation).

3.2 Interpretability Tools

To capture the dynamics behind the decisions of the biometric model, four interpretabil-

ity methods are applied to the trained model: Occlusion, Saliency, Gradient SHAP, and

DeepLIFT. Occlusion and Saliency are two of the simplest interpretability methods, while

Gradient SHAP and DeepLIFT are more sophisticated and powerful. These are imple-

mented in the Captum toolbox [Ko19] for PyTorch and are described below.

Occlusion The Occlusion method [ZF14] consists in measuring the influence of hiding

a portion of the input on the output of the model. When hidden, the more relevant input

parts will cause larger changes in the output, and will thus be assigned greater relevance in

the explanations offered by this method. This is the simplest method to interpret a model,

although the size of occluded regions should be carefully defined to obtain meaningful

explanations.

Saliency The Saliency method [SVZ14] is based on the gradients of a model given a

certain input. Through backpropagation, the gradient of target class scores w.r.t. the input

is obtained. A saliency map is then generated by rearranging the class score derivatives,

generating saliency maps that assign higher relevance to input regions that correspond to

higher gradients. Requiring a single backpropagation pass, this method is a simple and fast

way to obtain explanations on model predictions.

Gradient SHAP Gradient SHAP [LL17] is an approach based on game theory which

considers the explanations of a model’s predictions as models themselves. For sophisti-

cated deep learning models, the explanation models are simplified and interpretable ap-

proximations of the respective models. SHapley Addictive exPlanation (SHAP) values,

inspired by game theory’s Shapley values, are computed through the gradient of a random
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point between a baseline and the input with added random noise. The SHAP values denote

how much a given part of the input raises the probability for the considered class, and

are reportedly better aligned with human intuition and effective in discriminating among

output classes.

DeepLIFT DeepLIFT (Deep Learning Important FeaTures) [SGK17] performs back-

propagation to track the contributions to the output to the responsible parts of the input.

Throughout this process, it compares the difference in inputs and outputs considering a

reference (or baseline) input, assigning contribution scores to each neuron of the model. It

also allows for the study of negative contributions: how much a specific part of the input

contributes to lower the probability for the considered class.

3.3 Visualisation

Decision explanations obtained using interpretability tools are visualised using the multi-

coloured line plot feature of Matplotlib [Hu07]. ECG signals are plotted so that the colour

of each signal component represents its relative relevance for the decision. In this case,

lighter yellow colours represent less relevant time samples, whereas more relevant sam-

ples assume darker purple colours. This way, both the ECG morphology and the relevance

of each of its components are easily and intuitively presented.

4 Experimental Settings

The data used for model training and evaluation have been drawn from the Physikalisch-

Technische Bundesanstalt ECG Database (PTB) [BKS95, Go00] and the University of

Toronto ECG Database (UofTDB) [Wa14]. The PTB database includes on-the-person

(high-quality) 12-lead ECG signals acquired at 1 kHz from 290 subjects at rest. The

UofTDB includes single-lead off-the-person (more noisy and realistic) data acquired from

1019 subjects. To match the UofTDB, PTB signals were downsampled to 200 Hz and only

Lead I was used.

Five-second segments were blindly extracted (without fiducial detection) from the record-

ings. Fifty per cent of those segments (per identity) were used during training and the

remaining were reserved for testing. This provided more challenging test settings than

those commonly found in the literature, but also deliberately avoided the most realistic

settings (see [PC19]), for the sake of obtaining meaningful interpretations.

To simulate gradually increasing identification difficulty within each database, subsets of

N identities are considered, with N ∈ {2,5,10,20,50,100,200,500,1019}. The identities

in each subset are the first N in lexicographical order. Each subset includes all identities

that compose smaller subsets, so subjects #1 and #2 are the main focus of analysis since

these are present in all subsets. Throughout this paper, TN denotes the subset of UofTDB

data from N subjects and PN denotes the subset of PTB data from N identities. As stated in
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Tab. 1: True positive identification rate results (%) on the test data.

Database
Number of Identities

2 5 10 20 50 100 2001 500 1019

PTB 100.0 100.0 99.63 99.50 98.92 98.76 97.73 - -

UofTDB 100.0 97.26 98.30 95.46 93.86 91.16 89.70 91.20 91.45
1For PTB, this column corresponds to the entire set of 290 subjects.

Table 1, P290 was used instead of P200 to take advantage of the entire PTB dataset. Model

training details can be found online at this project’s repository.

Performance evaluation is based on the True Positive Identification Rate (or accuracy):

the fraction of test samples that are correctly assigned to their true identity by the trained

model. Interpretations are examined through the proposed visualisation method.

5 Results and Discussion

The results of the performance evaluation are presented in Table 1. These results roughly

follow the expected patterns considering the use of on-the-person versus off-the-person

ECG data. The model is able to attain high true positive identification rates in both

databases when the population is small, but as the set of subjects grows, performance

decreases and a wide gap distinguishes the more challenging off-the-person settings from

the more controlled on-the-person settings.

Additionally, one can find some unusual patterns in the performance results. Considering

M > N, one would expect identification performance with subset TN to be higher than with

subset TM . With UofTDB off-the-person data this is not always verified: e.g., from T5 to

T10, performance increases from 97.26% to 98.10%. In these cases, we need to consider

that datasets with fewer identities have fewer data and, thus, more unstable results. Alter-

natively, the identities added to TN to create TM may be easier to discriminate (“sheep”,

according to the concept of biometric menagerie [Do98, YD10]) and thus contribute to im-

prove accuracy. However, one should also regard the substantial regularisation needed to

avoid overfitting and the instability during training as possible causes for these discrepan-

cies. This is a very important insight into the increased difficulties of using off-the-person

data and the need for improved and more robust biometric models.

Analysing the explanations obtained using the four interpretability tools (examples in

Fig. 3 and Fig. 4), a trend is verified from smaller to larger identity subsets, consisting

on the deviation from focusing mainly on the QRS complex to the increasing relevance of

other parts of the heartbeats. This is also confirmed when combining the explanations of

all heartbeats of each person into a single average heartbeat (see Fig. 5 and Fig. 6).

With the cleaner medical signals from PTB, the focus is mostly on the QRS complex,

but information from other waveforms starts to become more and more relevant as more

identities are added. It is noteworthy how, when discriminating PTB subjects #1 and #2

in a two-subject scenario (see Fig. 5), the model still focuses mainly on the QRS, even
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Fig. 3: Explanations over an example five-second ECG segment from PTB. In each subplot, the

yellow to dark purple colours correspond to increasing time sample relevance and vertical grey lines

denote R-peak locations. Signals were filtered for easy visualisation.
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Fig. 4: Explanations over an example five-second ECG segment from UofTDB. In each subplot, the

yellow to dark purple colours correspond to increasing time sample relevance and vertical grey lines

denote R-peak locations. Signals were filtered for easy visualisation.
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Fig. 5: Average explanations over heartbeat waveforms of subjects #1 (top) and #2 (bottom) on the

subsets of the PTB database. In each subplot, the yellow to dark purple colours correspond to in-

creasing time sample relevance. Signals were filtered for easy visualisation.
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Fig. 6: Average explanations over heartbeat waveforms of subjects #1 (top) and #2 (bottom) on the

subsets of the UofTDB database. In each subplot, the yellow to dark purple colours correspond to

increasing time sample relevance. Signals were filtered for easy visualisation.
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though subject #2 has a very specific characteristic, the inverted T-wave, that is arguably

their most distinctive feature. This denotes how, in these cleaner signals, the QRS complex

is so stable that the remaining waveforms, more susceptible to heart rate variability, are

largely ignored by the model regardless of any visually obvious intersubject differences

they may present.

With the more realistic off-the-person signals from UofTDB, the QRS retains high impor-

tance but the relevance is more evenly spread among the signal waveforms. In the specific

case of subject #2 (see Fig. 6), it is evident that the QRS retains the highest importance for

the decision, even in T1019 (the largest subset). This may denote that, even in these more

challenging settings, the identification models will still give preference to the QRS over

other waveforms if it is sufficiently unique among the considered identities. Nevertheless,

in such large sets of identities, the expected behaviour is that of subject #1 (see Fig. 6),

since the limited identity information carried by the QRS will lead the model to also look

to other parts of the signal.

One interesting aspect is the difference between the results with Occlusion versus the other

methods. Occlusion generally grants the QRS complex much more relevance, regardless

of the settings. In the state-of-the-art approaches, the QRS complex is not only a source for

identity features but also frequently used as an easily detectable reference landmark for the

location of other ECG waveforms. This may also be the case in this end-to-end deep model.

Although there are challenging contexts where the QRS may not be the main contributor

to the decision, it may be essential to the deep model as a reference landmark to locate

other waveforms in the signal. Hence, when occluded, it will be the signal component that

most impacts the decision, causing the occlusion method to generally consider it the most

relevant.

6 Conclusion

This work aimed to explain how deep models use ECG signals to distinguish people, using

interpretability tools. Overall, the obtained results partially confirm the claim that the QRS

is the key to ECG-based biometrics. With small populations in on-the-person settings, it

can alone be used for reliable recognition. However, as we evolve towards larger popu-

lations and off-the-person settings, other components become relevant in discriminating

people, as the models require more identity information to overcome the hurdles placed

by enhanced intrasubject variability.

However, even though relevance is more evenly shared in off-the-person identification in

large sets of identities, the QRS is shown as essential by the occlusion method. It appears

that, just like several literature methods, the implemented end-to-end model learnt to use

the QRS as a landmark for the location of other ECG components in the signal, resulting

in large output changes when the QRS is occluded. Hence, despite the literature claims,

one should avoid relying too heavily on any single part of the ECG, including the QRS

complex, since all waveforms carry identity information that proves increasingly useful in

more realistic settings and larger populations.
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Beyond these insights, further efforts should be devoted to extend this study and offer

a deeper, more thorough, and more objective analysis of the contribution of each ECG

waveform to the model’s decisions. Obtaining more systematic and complete explanations

could create new opportunities on the use of interpretability tools during model training.

Using explanations to regularise models and promote focus in the most relevant signal

components or the distributed use of the whole signal (instead of just the QRS) could lead

to improved recognition accuracy and robustness.
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