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Weather and Meteorological Optical Range
Classification for Autonomous Driving

Celso Pereira™”, Ricardo P. M. Cruz

and Jaime S. Cardoso

Abstract—Weather and meteorological optical range (MOR)
perception is crucial for smooth and safe autonomous driving
(AD). This article introduces two deep learning-based architec-
tures, employing early and intermediate sensor fusion and multi-
task strategies, designed for concurrent weather and MOR clas-
sification in AD. Extensive experiments employing the publicly
available FogChamber dataset demonstrate that the proposed early
fusion architecture, characterized by its lightweight design and
simplicity, achieves an accuracy of 98.88 % in weather classification
and 89.77% in MOR classification, with a competitive memory
allocation of 5.33 megabytes (MB) and an inference time of 2.50
milliseconds (ms). In contrast, the proposed intermediate fusion
architecture prioritizes performance, achieving higher accuracies
of 99.38 % in weather classification and 91.88 % in MOR classifica-
tion. However, it requires a more substantial memory allocation
of 54.06 MB and exhibits a longer inference time of 15.55 ms.
Compared to other state-of-the-art architectures, the proposed
methods present a competitive balance between accuracy perfor-
mance, inference time, and memory allocation, which are crucial
parameters for enabling autonomous driving.

Index Terms—Weather classification, Meteorological optical
range (MOR) classification, Deep learning, Multi-task learning,
Single-task learning, Multi-modal, RGB Camera, LiDAR, Image
entropy.

1. INTRODUCTION

UTONOMOUS vehicles (AVs) rely on various sensors,
such as cameras and LiDAR, to perceive the surround-
ing environment and make informed decisions. Nonetheless,
adverse weather conditions can potentially disrupt the effective-
ness of these sensors through the scattering and absorption of
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emitted and reflected signals, or by degenerating image contrast.
This can ultimately result in degraded or inaccurate percep-
tion data, making it challenging for AVs to accurately detect
and recognize obstacles, navigate lanes, and make appropriate
driving decisions. Therefore, weather awareness is paramount
for AVs as it allows the vehicle’s behavior to be adjusted to
the weather conditions. According to data compiled by the
National Highway Traffic Safety Administration! (NHTSA),
over 5 million road accidents occurred in 2020. Around 14%
of these accidents were weather-related. In this article, we focus
on local weather classification, as traditional weather forecasts
do not offer the density and resolution required to accurately
reflect the meteorological effects experienced by an individual
AV and typically rely on Internet connectivity.

In the context of autonomous driving (AD), meteorological
optical range (MOR) holds significant relevance for assessing
safe driving conditions. MOR is defined as the distance through
the atmosphere needed to reduce the luminous flux in a colli-
mated beam from an incandescent lamp, at a color temperature
of 2700 K, to 5% of its initial value.? This measure of visibility is
important in many applications, including aviation and ground
transportation [1], [2]. MOR is affected by adverse weather
conditions such as fog and rain, as well as other factors such as
pollution and dust. As areference, fog represents an atmospheric
opacity with a visibility of less than 1000 meters and, according
to Chaabani et al.[3], can be considered dense when the MOR
falls below 40 meters and thick when the MOR is between 40
meters and 200 meters. Optical visiometers, such as transmis-
someters and scatterometers, are commonly used for accurate
MOR measurement at long distances; however, these devices
are bulky and therefore not suitable for AD, so other sensor
technologies, such as camera and LiDAR, should be employed.

Combining data from multiple sensors has been shown to
improve AD performance [4], [5], [6]. This combination allows
the individual limitations associated with each sensor to be mit-
igated. Therefore, multi-modal fusion strategies, such as early
fusion and intermediate fusion, are crucial to take advantage of
the different modalities and optimize overall performance.

Given that weather and MOR are closely related, we propose
two multi-modal multi-task deep learning-based architectures
that leverage data from both camera and LiDAR for weather
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gov/Api/Public/ViewPublication/813369

2IALA | Meteorological Optical Range. Available: https://www.iala-aism.
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and MOR classification for AD. The first architecture adopts
early fusion in order to retain rich information and minimize
computational complexity. In contrast, the second architecture
uses intermediate fusion and capitalizes on the self-attention
mechanism of transformers to fuse the global context from
both camera and LiDAR modalities. The use of both camera
and LiDAR sensors is based on their frequent recognition as
the most susceptible sensors to adverse weather conditions in
AD [7]. The proposed objectives are addressed in the form of
two classification tasks, for weather (in our experiments, fog and
rain), and MOR (which involves multi-class classification with
three distinct classes in our experiments).

Multi-task aims to improve data efficiency over the single-
task, so a direct comparison of the two tasks is made for each
architecture regarding accuracy performance, inference time,
and memory allocation.

A. Contributions

e Introduction of two multi-modal multi-task deep learning-
based architectures:

— Focus on maximizing efficiency while achieving state-
of-the-art performance in weather and MOR classifica-
tion within the context of AD;

— Significant advances in concurrently addressing these
two crucial tasks.

® Conduction of three detailed ablation studies:

— Evaluation of various architectures for concurrent
weather and MOR classification using the FogChamber
dataset;

— Comparison between these architectures and their cor-
responding single-task equivalents;

— Analysis of the effects of two optimization techniques:
multi-adaptive and fixed loss weighting;

— Insights that contribute to understanding the trade-offs
of the explored architectures.

B. Article Structure

Following the Introduction, the article is organized as follows:
Section II describes the state-of-the-art and previous contribu-
tions. The methodology is detailed in Section III. In Section IV,
the implementation process is described and the experimental
results are reported. Finally, Section V presents the conclusions,
and Section VI outlines future research directions.

II. RELATED WORK

Past contributions are highlighted for each task in isolation
since, as far as we are aware, no research article in the literature
simultaneously estimates weather and MOR. Furthermore, an
overview of previous research works incorporating attention
mechanisms in AD is provided.

A. Weather Estimation

In the literature, numerous research articles validate the de-
cline in camera and LiDAR perception during adverse weather
conditions [8], [9], [10], [11], [12], with several articles also
employing these sensors for weather estimation. In the research
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by Sebastian et al. [13], a deep convolutional neural network
named RangeWeatherNet was introduced for weather and road
condition estimation. The LiDAR range view projection (range,
X, ¥, Z, pulse intensity) serves as input to a convolutional encoder
based on the DarkNet architecture, with two classification heads
added at the end. This multi-task proposal employs the Seeing
Through Fog dataset® and estimates the weather and road condi-
tions in 5 (clear, snow, light fog, dense fog, and rain) and 4 (dry,
full snow, slushy, and wet) classes, respectively. The projected
dataset comprises 12,997 representations with a resolution of
2048 x 64 pixels. Leveraging both the last and strongest LIDAR
returns, the researchers reported a test accuracy of 76.71% for
weather classification and 66.69% for road condition classifica-
tion. Additionally, the model is stated to have 1.83 M parameters
and runs at 102 FPS on a GeForce RTX 2070 graphics card.

In the study conducted by Dhananjaya et al. [14], an im-
age dataset was acquired to estimate both weather conditions
(fog, rain, and snow) and light levels (bright, moderate, and
low). The data, captured in RCCC (red/clear) format, featured
a resolution of 1024 x 1084 pixels. Additionally, an active
learning framework was introduced for automated labeling and
dataset redundancy reduction. This multi-task proposal relies
on the ResNet18 pre-trained on the ImageNet dataset*, taking
grayscale-converted and resized images of 224 x 224 pixels as
input. The authors reported test F; scores of 73%, 75%, and 78%
for fog, rain, and snow estimation, respectively. Notably, there
is no mention of the architecture’s inference time.

In the work presented by Silva et al. [15], a convolutional neu-
ral network (CNN) named MobileWeatherNet was introduced.
This CNN, consisting of 1.60 M parameters, is based on the
architecture proposed by Simonyan and Zisserman [16]. The
network employs the LiDAR bird’s-eye view projection with
dimensions 256 x 256 x 3 to predict the weather conditions
categorized into three classes: clear, fog, and rain. The authors
reported a test accuracy of 97% and an inference time of 1.60 ms
on the RADIATE dataset.” However, the specifications of the
computer used for the time analysis are not provided.

Considering the well-balanced trade-off between accuracy
performance and inference time presented by the RangeWeath-
erNet and MobileWeatherNet architectures, their respective
encoders will serve as baselines for assessing the proposed
architectures.

B. MOR Estimation

Currently, MOR estimation heavily relies on camera-based
methods and neural networks, typically categorizing ranges in
intervals of tens of meters [7]. In the study by Vaibhav et al.
[2], the authors proposed a hybrid neural network for MOR esti-
mation from camera images, addressing a 3-class classification
task (0-50 m, 50-100 m, and >150 m). The network incorpo-
rates three types of input features: camera image, block-wise
Shannon entropy, and block-wise discrete cosine transform. On
their large-scale private dataset featuring highway and urban

3Seeing Through Fog Dataset. Available: https://www.uni-ulm.de/en/in/
driveu/projects/dense-datasets/

“4ImageNet Dataset. Available: https://www.image-net.org

SHeriot-Watt RADIATE Dataset. Available: https:/pro.hw.ac.uk/radiate/
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scenarios, the authors reported a test accuracy of 8§7.45% and an
inference time of 1.06 seconds measured on an NVIDIA TITAN
V graphics card, for an input image size of 1920 x 1080 pixels.
Despite the adequate performance, the notably high inference
time renders it impractical for real-time AD, motivating the
current work.

In the work by Chaabani et al. [3], a deep learning model
was introduced leveraging the AlexNet architecture for feature
extraction and employing 5 multiclass one-vs-rest support vector
machines (SVMs) for classification. Employing the publicly
available FROSI synthetic dataset®, the model is designed for
MOR classification in 5 classes (<100 m, 100200 m, 200—
300 m, 300400 m, >400 m). The dataset comprises 3,528
camera images of uncluttered road scenes with a resolution of
1400 x 600 pixels. The researchers reported a test accuracy of
99.02%; however, nothing was said about the inference time
of the model. It is worth noting that this dataset lacks high
photo-realism and data diversity.

C. Attention for Autonomous Driving

Attention mechanisms, inspired by the seminal work
of Vaswani et al. [17], have gained significant attention and
exploration in the field of AD. This interest is particularly evident
in applications such as lane changing [18], object detection [19],
[20], motion forecasting [21], [22], [23], [24], and waypoint
prediction [25], [26]. In the study conducted by Prakash et al.
[27], anovel architecture for end-to-end driving was introduced,
consisting of two key elements: 1) a multi-modal fusion trans-
former entitled TransFuser, designed to integrate information
from two modalities, namely single-view image and LiDAR
Bird’s Eye View (BEV), and 2) an auto-regressive network for
waypoint prediction. TransFuser incorporates four transformer
blocks with eight attention layers with four attention heads
to fuse intermediate feature maps between both modalities.
The fusion process is performed at four resolutions (64 x 64,
32 x 32, 16 x 16, and 8 x 8) throughout the ResNet feature
extractor, resulting in a 512-dimensional feature vector output
for each modality. These output vectors are then combined
through element-wise summation. According to the authors, this
approach led to remarkable performance, achieving excellent
results on CARLA.” Precisely, the proposal yielded a driving
score (DS) of 54.52% (£4.29%) and a route completion ratio
(RC) of 78.41% (+3.75%) in Town05 Short. In the case of
Town05 Long, the results were a DS of 33.15% (£4.04%) and
an RC of 56.36% (£7.14%). Considering its versatility and
effectiveness across various artificial intelligence (Al) tasks, the
TransFuser encoder will be employed to evaluate the proposed
architectures.

In the article by Choi et al. [28], the authors introduced the
Cognitive TransFuser, a framework that builds upon the Trans-
Fuser architecture. As part of this framework, the researchers
incorporated two auxiliary tasks, namely semantic segmentation

SFROSI  Dataset. Available:  https:/www.livic.ifsttar.fr/linstitut/cosys/
laboratoires/livic-ifsttar/logiciels/bases-de-donnees/frosi/

7CARLA Autonomous Driving Leaderboard. Available: https://leaderboard.
carla.org
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and traffic light classification. According to the authors, these
tasks were selected based on their semantic importance and
strong correlation with the primary waypoint prediction task.
In the proposed architecture, the semantic segmentation feature
map is fused into the first transformer block, and the 512-
dimensional feature vector output is utilized to predict both the
traffic light label and local waypoints through a gated recurrent
unit (GRU) sub-network. The researchers disclosed a DS of
80.67% and an RC of 95.14% in TownO05 Short. In Town05 Long,
the results were a 52.70% DS and a 96.18% RC. Additionally,
the authors reported an inference time of 22.60 ms, measured on
an NVIDIA GTX 1080Ti graphics card, utilizing an input data
resolution of 256 x 256 for both modalities.

In their article, Shao et al. [29] introduced InterFuser, an
architecture with ~53 M parameters designed to process and
fuse data from multi-modal multi-view sensors for compre-
hensive scene understanding and adversarial event detection. It
comprises three main components: 1) a multi-modal multi-view
fusion transformer encoder to fuse signals from multiple RGB
cameras and LiDAR, 2) a transformer decoder to generate
low-level actions and interpretable intermediate features, and
3) a safety controller to confine low-level control within the
safe set, utilizing the interpretable intermediate features. In
2022, InterFuser achieved state-of-the-art performance on the
Town05 benchmark, attaining a DS of 94.95% (4+1.91%) and an
RC of 95.19% (42.57%) in Town05 Short, as well as 68.31%
(£1.86%) and 94.97% (£2.87%) in Town05 Long, respectively.
Additionally, the authors reported an inference time of approx-
imately 20 ms on an NVIDIA GTX 1080Ti. Furthermore, in
2023, the same research group introduced ReasonNet [30],
surpassing their previous effort by integrating temporal and
global information from the driving scene. ReasonNet emerged
as the leader in both the Town05 benchmark and the CARLA
leaderboard (Sensors Track).

III. METHODOLOGY

A. Proposed Architectures

The proposed architectures are detailed in three parts:
1) the inputs, 2) the architectures per se, and 3) the outputs.
For enhanced clarity, each part within the architecture diagrams
is visually distinguished by a specific color: 1) blue for inputs,
2) green for architectures, and 3) orange for outputs.

1) Inputs: As illustrated in Figs. 1 and 2, the proposed ar-
chitectures utilize the Shannon entropy derived from the camera
image and the projected LiDAR intensity and range as input.
After undergoing center cropping (0.5, 0.5) and normalization
(0-1), the input data is fed directly into the proposed models.
The architecture depicted in Fig. 1 employs early fusion via
a concatenation process, enhancing rich information retention,
and simplicity, and reducing computational complexity. Con-
versely, the architecture in Fig. 2 employs intermediate fusion
with cross-modal self-attention, facilitating the fusion of the
global context from both modalities to improve contextual un-
derstanding and optimize parameter usage. Center cropping is
performed to expedite both the training and inference processes.


https://www.livic.ifsttar.fr/linstitut/cosys/laboratoires/livic-ifsttar/logiciels/bases-de-donnees/frosi/
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mechanisms for feature fusion.

The Shannon entropy is intended to highlight regions of the
image with uniform pixel values (low entropy) and regions
with variable and complex pixel patterns (high entropy). The
dimension of the transformation output is the same as that of
the original image. Fog reduces contrast and homogenizes pixel
values, resulting in lower entropy values in foggy regions of
the camera image. Rain, on the other hand, introduces localized
variations in intensity and texture, increasing entropy in the re-
gions of the image affected by raindrops. It is noteworthy to state
that in the real world, fog and rain can occur together to varying
degrees and that several factors, such as lighting conditions and
camera settings, can influence the image’s appearance.

Regarding the LiDAR data, it is projected into the camera
coordinates with the missing measurements encoded with zero
value. This strategy was implemented given that the bird’s
eye-view projection or the raw point-cloud representation do not
easily allow for deep early fusion as they are inherently different
from the camera features. The dimensions of the LiDAR range
view projections are also the same as that of the original image.
Both fog and rain can scatter and absorb the laser pulses result-
ing in decreased intensity readings and distorted point clouds.
However, in some cases, the effects due to rain can be greater,
mainly due to the multiple reflections caused by raindrops on
surfaces.

Illustration of the proposed multi-task architecture featuring intermediate fusion. It uses the MobileNetV3-Small encoder and cross-modal self-attention

2) Architectures: Two architectures are proposed, differen-
tiating themselves through variations in backbone design and
multi-modal fusion techniques. One favors optimal performance
with minimal resource usage, while the other aims for maximum
performance without excessive consumption of computing re-
sources.

Fundamentally, the simplest architecture consists of a
MobileNetV3-Small (layers 0-12) as backbone and two task-
specific heads, see Fig. 1. The heads are designed by taking
a 512-dimensional vector as input and employing a combina-
tion of convolution and dropout layers. The selected non-linear
activation function is the Rectified Linear Unit (ReLU). As
a reference, Google’s MobileNetV3 was presented at ICCV
in Seoul, South Korea in 2019 [31]. MobileNetV3-Small is a
widely adopted network designed to be executed on embedded
systems with limited resources while maintaining competitive
performance in tasks such as image classification and object
detection.

Conversely, the more complex architecture, inspired by
the work of Prakash et al. [27], integrates two dedicated
MobileNetV3-Small feature extractors, one for each modality,
and performs cross-modal self-attention intermediate fusion at
two distinct resolutions, as illustrated in Fig. 2. Additionally,
it employs the same two task-specific heads. Each transformer
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block comprises four attention layers with two attention heads.
Following the methodology presented in [27], the higher reso-
lution feature maps from the early encoder blocks are subjected
to downsampling via average pooling to a fixed resolution
(16 x 30) before passing on as inputs to the transformer block.
The output from the transformer block is then upsampled to
the original resolution using bilinear interpolation, followed by
an element-wise summation with the pre-existing feature maps.
After feature fusion at various resolutions and the subsequent
flattening operation applied to the feature maps of each modality,
a 512-dimensional feature vector is generated via element-wise
summation. This process results in a compact representation of
the vehicle’s surroundings, which serves as input for the two
classification heads.

3) Outputs: As previously stated, weather estimation is tack-
led as a binary classification task, distinguishing between fog
and rain. Meanwhile, the MOR estimation entails a multi-class
classification with three ordinal classes (0-40 m, 40-200 m, and
>200 m). Therefore, the weather classification head comprises 2
outputs, while the MOR classification head comprises 3 outputs.

Considering the influence of the TransFuser architecture in
this study, coupled with its notable performance across diverse
AD tasks, a direct comparison is conducted with an archi-
tecture featuring the TransFuser encoder along with the two
classification heads previously mentioned, as depicted in Fig. 3.
Furthermore, the proposed architectures are compared with
adapted versions of the MobileWeatherNet and RangeWeather-
Net architectures documented in the literature, as showcased in
Fig. 1. These architectures serve as a baseline for evaluating the
performance of the proposed architectures. Additionally, a direct
comparison is made with the equivalent single-task architectures
to assess the advantages and disadvantages associated with
adopting multi-task architectures. In the multi-task proposals,
the backbone is shared between the two classification heads,
whereas in the single-task architectures, there are two separate
backbones, one for each classification head.

B. Attentive Multi-Modal Fusion Transformer

The transformer architecture is designed to process an input
sequence consisting of discrete tokens (data patches), each

Tllustration of the baseline architecture featuring the TransFuser encoder.

representing a feature vector. To capture cross-token spatial
dependencies and account for the sequential order of tokens,
a learnable positional encoding is introduced by performing
element-wise summation with the input embeddings. In formal
terms, the input sequence is denoted as F"* € RV*Prs where
N is the number of tokens, and each token is represented by a
feature vector of dimensionality D . Linear projections are used
to compute a set of queries, keys, and values (Q), K, and V). In
addition, the transformer employs scaled dot products between
@ and K to compute the attention weights and aggregates the
values for each query,

KT
A = softmax <Q> %4
Vd

where @, K, V denote the query, key, and value matrices and d
the dimensions of the query/key.

Subsequently, a non-linear transformation is applied to pro-
duce the output features, F°“*, maintaining the same shape as
that of F'":

ey

F°u! = MLP(A) + F™" )

The attention mechanism is repeated multiple times in the
architecture, leading to a total of L attention layers. Within each
layer, multiple parallel attention heads are employed, generating
several sets of Q, K, and V values for each F'". Fig. 4 offers a
comprehensive depiction of the entire fusion process at a single
scale.

C. Losses

As presented in the previous sub-section, the architectures
presented have two outputs: weather and MOR. For the weather,
the Focal Loss (FL) is employed during the training process
to address the challenges posed by the class imbalance in the
dataset. Concerning the MOR, the training is conducted using
the Ordinal Encoding Loss (OEL).

The FL is a modification of the standard cross entropy loss that
aims to address the problem of class imbalance in classification
tasks. It assigns higher weights to hard-to-classify examples
and reduces the impact of well-classified examples. The FL,
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presented in (3), was first introduced in Lin et al. [32].

K

Lr(yr,pr) =— ) low - (L —pi)" - yrlog(pr))] (3)
k=1

where ¥, is the k-th element of the one-hot encoded true label
(thatis, y, = 1if k is the true class and y;, = 0 otherwise), py, is
the k-th element of the predicted probability distribution, K is
the number of classes, ay is the class-dependent scaling factor
that adjusts the balance between easy and hard examples and ~y
(> 0) is the focusing parameter that smoothly adjusts the rate at
which easy examples are down-weighted.

The OEL is employed to encourage ordinality in the predic-
tion distributions generated by the network [33]. For instance,
predicting that both “0-40 m” and “>200 m” are more probable
than “40-200 m” would not be logically consistent. To this end,
the network is trained to produce K —1 outputs, each of which
produces a binary decision between adjacent classes. In ordinal
encoding, classes are encoded using a cumulative distribution
approach: if k* is the true class, theny, = 1ifk < k*andy, = 0
otherwise. Each output of the network represents the incremental
neighbor probability. The inverse operation, conducted during
inference to predict the true class 12:, involves summing these
outputs, defined as k = 3 ;' 1(py > 0.5). The multi-class
Cross Entropy loss is then used to optimize the neural network.

The multi-task training is conducted by simultaneously op-
timizing the Focal and Ordinal Encoding losses. Adaptive
gradient-based optimization algorithms, like AdamW, dynami-
cally adjust the learning rate on a per-parameter basis, effectively
reducing the learning rate for frequently updated parameters
and increasing it for less frequently updated ones. This is
achieved by scaling the global learning rate by a function of the
past gradients specific to each parameter. As indicated by to

A’ lvaro S. Hervella et al. [34], the gradients of both tasks
can be decoupled to leverage this normalization for multi-task
learning. This decoupling allows the calculation of task-specific
per-parameter learning rates, taking into account only the past
gradients associated with each specific task. According to the
authors, this multi-adaptive (M-Ada) technique ensures bal-
anced training without the need for additional hyperparameters.
Consequently, the global parameters are updated as:

9§+1 = tglt + AG;W (néi,w) + Aeg,MOR (néi,IWOR> )

where AG} ;- and A}/ denote the parameters updates due
to the weather and MOR estimation tasks, respectively.

However, as highlighted in [34], this M-Ada optimization
technique requires additional training memory, as well as ad-
ditional operations to compute the task-specific gradients and
parameter updates. As a result, the computational time required
for each training experiment is prolonged compared to using
fixed loss weighting (FLW) hyperparameters. To evaluate the
effectiveness of the M-Ada optimization technique, a direct com-
parison is conducted against the conventional FLW optimization
technique.

IV. EXPERIMENTS
A. Dataset

Our proposed architectures are explored on the publicly avail-
able FogChamber dataset ® for weather and MOR classification.
The dataset was acquired with an OnSemi AR0230 camera and a
Velodyne HDL64E S3D LiDAR in a controlled weather chamber

8DENSE Datasets. Available: https://www.uni-ulm.de/en/in/driveu/projects/
dense-datasets
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Fig. 5. Histograms depicting MOR data (top) and weather data (bottom). The
top histogram provides a closer view within the 0-500 m range.

Fig. 6. Images captured by the camera under different weather conditions:
(left) a sample with fog and (right) a sample with rain. The MOR for the rain
sample is 56 meters, while for the fog sample, it is 34 meters.

TABLE I
SENSOR SPECIFICATIONS USED IN THE FOGCHAMBER DATASET

OnSemi AR0230 (with Lensagon BSM8018C optics)

Field of view 39.6°x21.7°

Focal length 8 mm
Frequency 30Hz

Quantization 12 bit
Resolution 1920x1024 pixels

Velodyne HDL64E S3D

Angular resolution 0.4°
Channels 64
Frequency 10Hz

Horizontal field of view 360°

Measurement range 120 m

Returns Dual (strongest and last)
Vertical field of view 26.9° (2.0° to -24.9°)
Wavelength 903 nm

under varying weather and lighting conditions. A sample of
the dataset is depicted in Fig. 6 with the different weather
and lighting conditions (day and night). Details on the weather
chamber setup can be found in Colomb et al. [35] and Duthon
et al. [36]. The sensor specifications are listed in Table I. The
dataset has 1293 samples with two weather labels (fog and rain)
and amedian MOR of 49 meters; however, as shown in Fig. 5, the
weather classes are highly imbalanced. The dataset imbalance
can negatively affect the model’s performance due to the model’s
inherent bias towards the majority class [37]. To mitigate this
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TABLE II
SUMMARY OF THE EMPLOYED HYPERPARAMETERS

Hyperparameters
1024 x 1920 x 3
512 x 960 x 3

Input Shape
Model Input Shape

Losses Focal / Ordinal Encoding
Optimizers AdamW / AdamW
Global Learning Rates le—5/1le—5
Weight Decays le—4/ le—4
Batch Size 16
Number of Epochs 50
Loss Weighting Hyperparam. YWeather =1, YMOR =1
Seeds 10, 21, 29, 38, 64, 65, 70, 72, 81, 89
TABLE III

PARAMETER COUNT FOR EACH ARCHITECTURE

Task | Fusion Encoder N. of Parameters
S E MobileWeatherNet [15] 1,150,802
N E MobileNetV3-Small (Proposed) 2,593,220
S E RangeWeatherNet [13] 7,862,884
S 1 MobileNetV3-Small (Proposed) 27,612,676
S I TransFuser [27] 133,945,348
M E MobileWeatherNet [15] 649,579
M E MobileNetV3-Small (Proposed) 1,370,788
M E RangeWeatherNet [13] 4,005,620
M I MobileNetV3-Small (Proposed) 13,880,516
M 1 TransFuser [27] 67,046,852

Notes: Italics denote the proposed architectures; S — single-task;
M — multi-task; E — early fusion; I — intermediate fusion.

problem, the minority class was oversampled (as described in the
next subsection). To the best of our knowledge, the FogChamber
dataset is the only publicly available dataset that features camera
and LiDAR data, along with weather and MOR annotations.

B. Implementation

The FogChamber dataset was randomly split into three sets,
with 60% allocated for training, 20% for validation, and 20%
for testing. The training set was subjected to a random syn-
thetic augmentation, which consisted of applying horizontal
flips and affine transformations, with a scaling factor ranging
between 1.10 and 1.25. To mitigate the problem of imbalanced
weather classes, a weighted sampling technique was employed.
This technique assigns higher weights to samples from the
minority class (i.e., rain), with the weights being calculated
inversely proportional to the class frequency. This oversampling
approach results in a more balanced class distribution within the
training set. Furthermore, all input data were center-cropped
(0.5, 0.5) and normalized (0—1) based on the statistics from the
training set.

All experiments were trained from scratch with the same set
of hyperparameters across ten different seeds. A summary of the
employed hyperparameters is provided in Table II. Furthermore,
the FL was employed with a; =1 and v = 2. Both losses
were optimized using the AdamW algorithm with ; = 0.9 and
B2 = 0.999. The top-performing models were saved based on
the validation set losses.

As a reference, the parameter count for both multi-task and
single-task variants of each architecture is presented in Table III.
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TABLE IV
TEST RESULTS FOR WEATHER AND MOR CLASSIFICATION AND COMPARISON WITH LITERATURE SINGLE-TASK AND MULTI-TASK ALTERNATIVES
Task | Fusion Encoder Optimizati p T Cor::":(‘:;pa i Keworaty c(,hxolg oo - Memory (MB) |  Time (ms)
S E MobileWeatherNet [15] N/A 94.58% (+4.34%) | 73.67% (£13.87%) 95.04% (£3.48%) 79.04% (+3.86%) 62.12% (£9.12%) 78.75% (£5.60%) 4.42 (1+0.00) 6.67 (£0.01)
s RangeWeatherNet [13] N/A 89.65% (£5.99%) | 20.38% (£32.70%) | 88.03% (£5.57%) | 69.00% (£4.42%) | 29.33% (£9.40%) | 62.80% (£4.78%) | 31.03 (£0.00) | 18.25 (£0.02)
s E | MobileNetV3-Small (Proposed) NA 98.81% (+0.76%) | 92.77% (+£4.17%) | 98.82% (+0.73%) | 90.38% (+1.62%) | 81.93% (+3.48%) | 90.35% (+1.68%) | 10.10 (0.00) | 4.80 (+0.05)
S T TransFuser [27] N/A 99.85% (L0.19%) | 99.01% (L1.25%) | 99.84% (L0.19%) | 92.58% (L1.10%) | 86.03% (L2.42%) | 92.58% (L1.09%) | 515.53 (L0.00) | 130.66 (£0.05)
s I | MobileNetV3-small (Proposed) NA 99.50% (£0.42%) | 96.76% (£3.16%) | 99.49% (£0.43%) | 91.38% (£1.25%) | 83.60% (£2.93%) | 91.30% (£1.30%) | 106.92 (£0.00) | 3136 (£0.07)
M E MobileWeatherNet [15] M-Ada | 93.85% (£2.19%) | 70.93% (£7.53%) | 94.45% (£ 191%) | 79.85% (£527%) | 6520% (£846%) | 80.61% (£4.79%) | 2.50 (£0.00) | 337 (£0.00)
M E MobileWeatherNet [15] FLW 9038% (£3.82%) | 59.98% (£934%) | 91.71% (£2.93%) | 83.19% (£5.40%) | 70.25% (£9.02%) | 83.64% (£5.03%) | 2.50 (£0.00) | 3.33 (£0.02)
M E RangeWeatherNet [13] M-Ada 81.42% (£4.16%) | 18.14% (£12.42%) | 83.64% (£2.84%) | 66.69% (£2.72%) | 33.44% (£8.47%) | 63.73% (£4.44%) | 1624 (£0.00) | 9.06 (£0.07)
M E RangeWeatherNet [13] FLW 77.23% (£547%) | 9.01% (£8.81%) | 80.48% (£3.64%) | 69.00% (£3.49%) | 37.31% (£6.47%) | 67.25% (£2.80%) | 1624 (£0.00) | 9.09 (£0.02)
M E | MobileNetV3-Small (Proposed) |~ M-Ada | 98.88% (+1.05%) | 94.02% (£4.72%) | 98.92% (+0.98%) | 89.77% (+1.14%) | 80.83% (+2.15%) | 89.76% (£1.19%) | 533 (£0.00) | 2.50 (£0.02)
M E | MobileNetV3-small (Proposed) FLW 96.92% (£1.34%) | 83.90% (£5.54%) | 97.09% (£1.21%) | 91.15% (£1.49%) | 83.43% (£2.48%) | 91.14% (£1.45%) | 533 (£000) | 2.50 (0.02)
M T TransFuser [27] M-Ada | 99.19% (£0.99%) | 95.66% (£4.87%) | 99.22% (£093%) | 92.08% (£0.91%) | 85.06% (E£1.82%) | 92.06% (£0.92%) | 258.30 (£0.00) | 6532 (£0.06)
M 1 TransFuser [27] FLW 99.73% (+0.39%) | 98.57% (£2.09%) | 99.73% (+0.38%) | 91.65% (£1.71%) | 84.43% (£3.30%) | 91.71% (£1.60%) | 258.30 (£0.00) | 65.36 (£0.05)
M 1 MobileNetV3-Small (Proposed) M-Ada 99.38% (£0.39%) 96.24% (+2.47%) 99.38% (£0.39%) 91.88% (£1.01%) 84.75% (+2.06%) 91.88% (£0.95%) 54.06 (+0.00) 15.55 (+0.19)
M 1| MobileNetV3-Small (Proposed) FLW 97.00% (£0.75%) | 83.68% (£4.80%) | 97.17% (£0.69%) | 91.88% (£1.21%) | 84.66% (£2.39%) | 91.84% (£1.22%) | 54.06 (£0.00) | 15.60 (£0.05)

Notes: Italics denote the proposed architectures and bold denote the best results for each category; S — single-task;
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C. Results

The test results from the different experiments are presented
in Table IV, featuring mean and standard deviation values, with
the best results highlighted in bold. The evaluation of the models
involves the use of metrics such as weighted accuracy, weighted
F;, and Cohen’s kappa (k) score. These metrics are com-
monly adopted in classification scenarios involving imbalanced
datasets. The memory allocation, measured in megabytes, and
the average inference time, measured in milliseconds, are also
provided. Itis noteworthy to state that the average inference time
was calculated based on 10,000 repetitions with GPU warm-up.
Moreover, the confusion matrices for the three best-performing
encoders can be seen in Figs. 7- 9.

Among the results obtained, it is worth emphasizing the
following:

® The proposed multi-task architectures outperform the

equivalent single-task architectures regarding inference

time and memory allocation while maintaining compa-
rable accuracy performance. Improvements in memory
allocation range from 47.23% to 49.44%, and in aver-
age inference time from 47.92% to 50.41%, progressing
from the simplest to the most complex architecture. This
improvement can be attributed to the smaller number of
parameters in the multi-task architectures;

Among the early fusion architectures, the proposed ap-
proach based on the MobileNetV3-Small encoder offered
the best results regarding both accuracy performance and
inference times, while also presenting competitive memory
allocation results;

Despite exhibiting a slight decrease in accuracy perfor-
mance compared to the alternative proposed architec-
ture, the proposed early fusion architecture is significantly
lighter, making it a potentially advantageous compromise
in various applications;
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TransFuser encoder.

e The proposed early fusion architecture achieves an average
inference time of 2.50 ms, equivalent to approximately
400 FPS, making it the fastest architecture assessed. Given
the LiDAR acquisition rate of 10 FPS, achieving real-time
inference is feasible even on a less powerful computer
system,

e The proposed intermediate fusion architecture provides
performance on par with the more complex baseline archi-
tecture incorporating the TransFuser encoder. Additionally,
it holds the advantage of demanding significantly fewer
resources while quadrupling the refresh rate;

® The proposed architectures show state-of-the-art results
in both tasks. These strong performances are further ev-
idenced by the clearly defined diagonals in the confusion
matrices;

e With this particular set of hyperparameters, the baseline
architecture incorporating the RangeWeatherNet encoder
exhibits overfitting to the training set. This phenomenon is
likely attributed to its high parameter count, leading to low
Cohen’s kappa scores;

¢ The baseline architecture featuring the MobileWeatherNet
encoder requires the least memory among the assessed
architectures; however, it exhibits longer inference times
compared to the proposed early fusion architecture, and
achieves significantly lower levels of performance;

¢ Inspecific experiments, the M-Ada optimization technique
exhibits superior performance, while in others, the FLW
optimization technique outperforms. Consequently, there
is no significant improvement in performance that justifies
the increased complexity and memory allocation required
by the M-Ada optimization technique during the training
phase.

When estimating these tasks, enhancing the complexity of the
architectures leads to an improvement in accuracy performance.
However, this enhancement is relatively modest when compared
to the simultaneous substantial increases in memory allocation
and inference time. For instance, when comparing the proposed
early fusion architecture to the baseline featuring the TransFuser
encoder, there is a 0.31% improvement in weather estimation and
a 2.57% improvement in MOR estimation. Nonetheless, this
improvement is offset by a striking 2,513% increase in infer-
ence time. Such a significant increase in resource consumption

TABLE V
SYSTEM SPECIFICATIONS EMPLOYED FOR TRAINING, VALIDATION, AND
TESTING PURPOSES

System Specifications
CPU Intel Core 17-12700
RAM (GB) 16
GPU NVIDIA RTX A2000
VRAM (GB) 12
PyTorch Version 1.13.1
CUDA Version 11.8
Python Version 3.10.12

diminishes the practical value of the architectures in AD and
may ultimately render them impractical.

The system specifications employed in this article are detailed
in Table V.

V. CONCLUSION

In AD, algorithms must deliver peak performance while
maximizing efficiency. Based on this consideration, this article
introduces two deep learning-based architectures, employing
early and intermediate sensor fusion and multi-task strategies,
designed for concurrent weather and MOR classification. To
the best of our knowledge, these architectures stand as the
pioneering endeavor in tackling both of these tasks simulta-
neously in the context of AD. These architectures distinguish
themselves through variations in backbone design and multi-
modal fusion techniques. One prioritizes achieving optimum
performance with minimal resource usage, while the other aims
for peak performance without excessive computational resource
consumption.

The proposed architectures exhibit state-of-the-art results in
both tasks and outperform the equivalent single-task architec-
tures in inference time and memory allocation while maintaining
comparable accuracy performance. Despite exhibiting slightly
lower accuracy performance, the proposed early fusion architec-
ture is ten times lighter and six times faster than its more complex
counterpart, presenting a potentially advantageous compromise
across various applications. Conversely, the proposed intermedi-
ate fusion architecture matches the performance of the baseline
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architecture featuring the literature TransFuser encoder. Further-
more, it holds the advantage of demanding significantly fewer
resources while quadrupling the refresh rate.

Overall, the proposed architectures strike a commendable
balance between accuracy performance, inference time, and
memory allocation, making them highly suitable for AD. Specif-
ically, the architecture incorporating the MobileNetV3-Small
and early fusion achieves a noteworthy 98.88% accuracy in
weather classification and 89.77% in MOR classification, with
a competitive memory allocation of 5.33 MB and an inference
time of 2.50 ms (400 FPS). Conversely, the architecture featuring
the MobileNetV3-Small and cross-modal self-attention interme-
diate fusion demonstrates an even higher accuracy of 99.38% in
weather classification and 91.88% in MOR classification, albeit
with a higher memory allocation of 54.06 MB and an inference
time of 15.55 ms (64 FPS).

VI. FUTURE RESEARCH DIRECTIONS

For future research endeavors, it would be interesting to
conduct an analysis utilizing supplementary datasets acquired in
real-world scenarios and covering a broader spectrum of weather
conditions. Using an appropriate dataset, estimating weather
across additional classes, specifically clear and snow would be
compelling. Furthermore, it would be interesting to analyze the
trade-offs between accuracy performance, inference time, and
memory allocation by systematically reducing the layers within
the transformers.
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