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Abstract
Biometric recognition and presentation attack detection (PAD) methods strongly rely on
deep learning algorithms. Though often more accurate, these models operate as complex
black boxes. Interpretability tools are now being used to delve deeper into the operation
of these methods, which is why this work advocates their integration in the PAD scenario.
Building upon previous work, a face PAD model based on convolutional neural networks
was implemented and evaluated both through traditional PAD metrics and with inter-
pretability tools. An evaluation on the stability of the explanations obtained from testing
models with attacks known and unknown in the learning step is made. To overcome the
limitations of direct comparison, a suitable representation of the explanations is con-
structed to quantify how much two explanations differ from each other. From the point
of view of interpretability, the results obtained in intra and inter class comparisons led to
the conclusion that the presence of more attacks during training has a positive effect in
the generalisation and robustness of the models. This is an exploratory study that con-
firms the urge to establish new approaches in biometrics that incorporate interpretability
tools. Moreover, there is a need for methodologies to assess and compare the quality of
explanations.

1 | INTRODUCTION

The success of artificial intelligence (AI) systems demonstrated
by the excellence of machine learning (ML)‐based systems in
most of the AI fields outperforming traditional handcrafted
methods, is mainly due to improvements in deep learning (DL)
methodology, availability of large databases, and computational
gains obtained with powerful graphics processing unit (GPU)
cards [1, 2].

One of the greatest current challenges related to AI is the
lack of transparency of DL algorithms [3–5]. After the
euphoria around artificial neural networks and their over‐
performing accuracy rates, the research community is start-
ing to understand the drawbacks of black‐box algorithms and
the importance of being able to understand their decisions and
reasoning.

In particular, biometric systems (BS) and anti‐spoofing
techniques may be positively impacted by the use of

interpretability. Most BS can be spoofed by an attacker pre-
senting fake or altered samples of the biometric trait at the
sensor. Presentation attack detection (PAD) methods are
intended to detect spoofing attacks. When designing a PAD
method, it can be very rewarding to know more about the
rationale behind its predictions instead of just blindly relying on
its outputs. Hence, studying what a model learns and which in-
formation it uses to decide about a threat is very beneficial.

As in several other pattern recognition tasks, the use of
DL‐based PAD methods is increasingly common [6, 7].
There is a pressing need for the use of interpretability as the
artificial neural networks become deeper and the process
more elusive. Moreover, traditional evaluation setups, whose
adequacy has been questioned considering the robustness to
unseen attacks [8–10], may not be able to thoroughly cap-
ture the model’s behaviour. Also, traditional metrics quantify
the performance solely relying on predicted labels, without
looking into the information used to reach these predictions.
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This assessment is quite limited, especially for DL‐based
approaches.

Considering the aforementioned limitations of the current
approach to PAD, this work argues that the evaluation frame-
works need to be reformulated to become more thorough and
meaningful. Interpretability, with its ability to provide insights
into the operation of complex models, can be the key to achieve
this goal by providing complementary information. Another
perspective is the need to test the robustness of the models and
their capacity to generalise to unknown attacks, that is, types of
attacks that were not seen by themodel during the training phase.
Again, through interpretability it may be possible to analyse how
differently a model is behaving in the face of a known/unknown
(seen/unseen) type of attack sample.

Our previous work [11] offered a preliminary interpretability
analysis of a face PAD method. The insights on PAD perfor-
mance offered by both traditional metrics and a state‐of‐the‐art
interpretability tool (Grad‐CAM [12]) were subjectively
compared to assess whether the latter could offer useful infor-
mation on the model's behaviour. This work extends the previ-
ous research with amore thorough and systematic analysis of the
explanations, offeringmore solid andmeaningful conclusions on
the potential of interpretability for PAD. The analysis proposed
in the current work went beyond the visual inspection of the
explanations of a few examples. Inspired by state‐of‐the‐art
methodologies, a suitable semantic representation of the expla-
nations was produced such that it was possible to quantify how
much the two explanations differ from each other.

It is not a goal of this exploratory study to push forward
the state of the art of face PAD methods or address the
generalisation problem in itself. The aim is instead to push
forward the non‐existent field of the explainability analysis of
the biometric topics. At the moment, there are no available
methodologies to ascertain the performance of a model from
the explainable artificial intelligence (xAI) perspective or to
assess the quality of the explanations provided. The main
contributions of this work are as follows:

1. A pioneering study of interpretability on a face PAD
method using data comprising a wide range of attacks
(image frames extracted from videos consisting of several
types of worn paper masks, paper photos, and replayed
recordings);

2. The comparison between traditional performance metrics
and interpretability tools in different evaluation frameworks
(One‐Attack vs. Unseen‐Attack);

3. A systematic evaluation of the explanations obtained
regarding the PAD models’ decisions (for different evalu-
ation frameworks) for both the bona fide and the presen-
tation attack samples: (a) in intra‐class studies, comparing
(i) different explanations for the same sample and (ii) ex-
planations for different samples; (b) in inter‐class studies,
producing an overall comparison.

The remainder of this work is organised as follows: Sec-
tion 2 describes the concepts of PAD and the face PAD
network used; Section 3 presents the related work on

interpretability, biometrics and PAD; Section 4 highlights the
challenges addressed by the proposed study; Sections 5–8
describe the proposed methodology; Section 9 details the
experimental setup; Section 10 presents the results and their
discussion; and Section 11 sums up the conclusions drawn
from this work and points directions for future work.

2 | PRESENTATION ATTACK
DETECTION (PAD)

2.1 | PAD evaluation frameworks

The main definitions regarding presentation attack detection
(PAD) used in the work follow the ISO/IEC 30,107‐3:2017
standard [13]. The more classical approaches in PAD use only
one type of attack, that is, one PAI Species (PAISp) to train and
test the model. As in the authors’ view, this approach leads to a
very optimist evaluation of the classifier's performance. It is
necessary to test the robustness of the model to PAISp not
shown at the time of training. In the present work, the ex-
periments analysed the explanations obtained in different
evaluation frameworks described as follows:

One‐Attack: The model is trained and tested with bona
fide samples and only one type of attack. Therefore, the
only type of attack shown to the network during the test
phase was already seen in the training step. The expression
One‐Attack#i means that the respective model was trained
and tested with bona fide samples and presentation attack
samples of type i.

Unseen‐Attack: The model is trained with all but one type
of attack and tested with this remaining attack, besides the
bona fide samples in the training and testing steps. Therefore,
during the test phase the network is evaluated only with one
type of attack that was not present in the training step—
referred to as the unseen attack. Whereas in the training
phase, all the other types of attacks were available. The
expression Unseen‐Attack#i means that the respective
model was tested with bona fide samples and presentation
attack samples of type i and trained with bona fide samples
and the remaining types of attacks (i.e., trained with
j ∈{1,...,7}\ i).

2.2 | Face presentation attack detection
model

A PAD method receives a biometric trait measurement as
the input and returns a prediction of a bona fide presen-
tation or presentation attack. As in [11], the model used
for PAD is an end‐to‐end convolutional neural network
(CNN) with a relatively simple architecture, detailed in
Figure 1. As an end‐to‐end CNN, the model could freely
learn the most appropriate features for this task, which is
the most interesting context on interpretability studies
focused on gaining insight into the inner workings of a
classifier.

2 - SEQUEIRA ET AL.



3 | RELATED WORK

3.1 | Interpretability concepts and literature

There is no single definition regarding interpretability and
explainability in AI. For some authors there is a clear
distinction between them, leading to distinct definitions as
follows. Interpretability: an interpretation is the mapping of
an abstract concept (e.g. a predicted class) into a domain
that a human can grasp. Explainability: an explanation is
the collection of features of the interpretable domain that
have contributed to the produced decision (e.g. classification
or regression) [14]. Other authors use the terms inter-
changeably, regarding both interpretability and explainability
as a three‐stage process in the development cycle of an ML
model, with these stages being named as pre‐, in‐, and post‐
model [5] stages. To date, there is still a predominance of
studies putting efforts on this last stage of post‐model
interpretability, where the focus is on understanding an
unconstrained previously built model.

The efforts of the research community posed on the
field of xAI resulted in the development of both inter-
pretable models (pre‐model and in‐model stage) and
explanation methods (post‐model stage) over the past few
years [3, 5, 15–18]. Nonetheless, most of the efforts have
been put on these explanation methods where the focus is
more on understanding an unconstrained and previously
built model than on creating intrinsically interpretable
models. The xAI contributions span over the fundamental
research in machine learning to applications in other fields
such as medicine [16, 19, 20] or finance [17]. It is not a
coincidence that the pioneer application fields are ones
where it is of huge importance to foster awareness for the
advantages and the necessity of transparent decision
making.

Now that the dust raised by the euphoria surrounding
artificial neural networks and their over‐performing accuracy
is starting to settle down, the research community is alert to
the reality of being made accountable for what these
outstanding models actually learn and decide. The consensus
is that much can be learnt by understanding the powerful,
black‐box‐like deep learning models that achieve remarkable
accuracy but provide no information about what exactly
makes them reach their predictions. There is a growing body
of work in the literature devoted to interpreting and
explaining the behaviour of machine learning systems for
various problems [12, 21–23].

3.2 | xAI for biometrics and PAD

PAD methods in general, and face‐focused ones in particular,
have demonstrated remarkable performances. This is mostly
due to the advantages withdrawn from using efficient deep
CNN models [24–26]. The PAD generalisation problem has
also been addressed in recent works and breakthroughs were
accomplished, with one‐class classification or anomaly detec-
tion approaches [6, 27–32], fostering the robustness of face
PAD methods to unknown attacks.

Regarding xAI in the biometrics field, Zee et al. [33]
combined face recognition and a face PAD method and tried
to use the interpretations to enhance the performance of the
recognition method. In the line of thought of going beyond the
binary supervision by using only the labels of the two classes,
another work used a depth map and the rPPG signal as the
auxiliary supervision to improve the performance of the face
anti‐spoofing method [34]. More recently, the interpretability
and explainability of machine learning models have gained
relevance and more works are focused on the application of
their methodologies in the field of biometrics and, in particular,
to the face PAD problem whether by attempting to estimate
the depth map [35–37], provide saliency maps in the CNN
model [38, 39] or even studies on the estimation of patterns
that characterise an attack sample [38, 40]. To the extent of the
authors’ knowledge, it is still a territory that has been explored
very little to apply interpretability tools and analyse biometric
recognition and PAD techniques from the xAI perspective.
The current work reinforces the authors’ idea that the research
in PAD methods may be remarkably impacted by the outcomes
of following this path. The first effects in the PAD field will be
obtained via the reinforcement of trust as an outcome of
model validation as well as the improvement of PAD models’
robustness through the detection of their hidden vulnerabilities
[11]. From the authors’ previous work [11], it was proposed
that through interpretability it was possible to grasp the limi-
tations of the models in satisfyingly generalising from the
training data. These observations highlight the necessity for
performing model validation using interpretability tools, taking
advantage of the acquired knowledge to interpret the decision‐
making process and anticipate vulnerabilities and ultimately, to
adapt the model to overcome the anticipated vulnerabilities. In
[41] are highlighted the current limitations and the need for
interpretability in biometrics, noting that for over 25 years
researchers in face recognition and biometrics have measured
the accuracy of algorithms and systems decision on benchmark
datasets (the ‘decision accuracy’). However, through the new
perspective, regardless of whether the system decision is ulti-
mately correct or incorrect, an explanation must describe how
the system came to its conclusion and it should be noted that
an accurate explanation does not imply that a system provided
the correct answer. The open challenge pointed out by the
authors here is that, while the community has established the
‘decision accuracy metrics’, researchers have not developed
performance metrics for explanations. In [42, 43] robust iris
PAD methods are analysed from the perspective of interpret-
ability. Focusing on face morphing attacks, Seibold et al. [44]

F I GURE 1 Architecture of the implemented presentation attack
detection end‐to‐end deep model (from [11])
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proposed a new interpretability method for DNN‐based
morphing attack detectors that determines which regions of
an image contain artefacts. Interpretability has also been the
focus of study on other topics related to biometrics, including
biometric template security [45] and fingerprint segmentation
[46].

The need to evaluate the explanations for the decisions
made by the model is one of the major open problems in the
field of biometrics today. This open challenge requires research
effort to provide breakthroughs that will shed light on new
paths on the way to better understanding the black box models
that have been used rather trustfully. Moreover, this is also
motivated by the regulation. For instance, according to the
European Union General Data Protection Regulation (EU‐
GDPR), companies that want to deploy algorithms which use
this type of sensitive data to produce high‐stake decisions will
have to implement ‘suitable measures to safeguard the data
subject’s rights and freedoms and legitimate interests’ and be
concerned about Article 22, which states that individuals ‘have
the right not to be subject to a decision based solely on
automated processing’ [47]. Therefore, for the implementation
of these algorithms in daily life, interpretability will play a very
important role. Definitely, it is not yet clear what the appro-
priate methodologies for defining performance metrics for
explanations would be. Further efforts should be devoted to
reducing subjectivity in the evaluation of explanations through
objective metrics and procedures [48]. The present work aims
to be a step further on the path of making interpretability tools
ready for application in biometrics and PAD.

4 | OVERVIEW OF THE CHALLENGES
ADDRESSED WITH THE
INTERPRETABILITY ANALYSIS OF FACE
PAD

There are several aspects to investigate in the new horizons
opened by the xAI perspective over face PAD. In an earlier
work by the authors [11], some ‘desirable properties’ of PAD
methods that can be evaluated using interpretability tools were
identified: (1) explanations for the same sample should be
similar whether or not it is seen during training (data swap); (2)
explanations for the same sample should be similar whether or
not the model is trained to detect that specific attack (One‐
Attack vs. Unseen‐Attack); (3) explanations should be similar
for different samples with the same label (intra‐class coher-
ence); (4) explanations should be meaningful (a human would
likely use them to provide the same decision). These properties
should be verified by a PAD method that is robust, coherent,
meaningful, and can adequately generalise to unseen data and
attacks. These desirable properties of a robust PAD method
and the methodologies to ascertain them unfold a yet unex-
plored field of research.

The present work tackles some open questions regarding
the stability of the explanations produced by the models
varying from the evaluation frameworks as well as how much
the explanations vary across the two classes, bona fide or

presentation attack. The first aim is related to the above‐
mentioned property, ‘explanations for the same sample
should be similar whether or not the model is trained to detect
that specific attack (One‐Attack vs. Unseen‐Attack)’. It is to be
investigated how much the presence or absence of the types of
attacks in the training data will affect the way the model learns.
Another aim is related to the property, ‘explanations should be
similar for different samples with the same label (intra‐class
coherence)’. It is a goal to investigate the intra‐class coherence
of explanations for the bona fide samples and how much the
models are affected by variations in the presentation attack
known in the learning phase. Ideally, a robust PAD method
would learn the discriminative features of the bona fide sam-
ples no matter what attack samples are shown to it. A question
is then posed to understand how much the information to
classify the bona fide samples is affected by changing it be-
tween the One‐Attack#i and One‐Attack#j frameworks and
then between the Unseen‐Attack frameworks. To try and
answer this, a thorough investigation is performed regarding
the bona fide samples.

The example shown in Figure 2, analysed in the previous
work [11], gave valuable insights into the question posed. It can
be observed that although the bona fide samples are present in
the training step for all these models, the information that the
classifier is using to correctly label them varies significantly
when the types of presentation attack samples in the training
step are different. This is more evident for Attack#3: in the
case of One‐Attack#3 the model was trained and tested with
this attack and in the Unseen‐Attack#3 it was trained with all
but this attack and as a result, the explanations for the classi-
fication of the bona fide sample differ enormously.

Despite the analysis based on the examples, it is of utmost
importance to perform a more systematic study of these
matters. Thus, the approaches presented in this work will be
applied to perform more than a simple qualitative and some-
how subjective analysis. Instead, it is intended to analyse all the
bona fide images and make a quantitative evaluation of these
types of discrepancies between the explanations obtained in
the different evaluation frameworks.

To study how the explanations for the bona fide images are
affected by the presence of different types of attacks in the
training set, the set of bona fide images correctly classified
across all the experiments were selected and the explanations
were obtained (in the test step) for both frameworks: One‐
Attack and Unseen‐Attack. The same type of reasoning can
be done regarding the presentation attack samples. In Figure 3,
previously analysed in [11], it can be observed that the infor-
mation that the classifier is using to correctly label the samples
varies significantly depending on whether this type of presen-
tation attack samples is present in the training step or not.

The challenges of this work are increased by the lack of
suitable metrics and the subjectivity in the evaluation of the
explanations. The proposed study aims at being one step further
in applying interpretability tools to biometrics and PAD. It
should be stressed that improving the state of the art of face
PAD methods or the PAD generalisation problem is not the
focus of this work. Instead, the aim is to fill the void in the
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methodologies to ascertain the performance of a biometrics
model and its vulnerabilites from the xAI perspective and ulti-
mately, to assess the quality of the explanations provided.

5 | METHODOLOGY FOR THE
REPRESENTATION OF THE PAD
MODELS’ EXPLANATIONS

5.1 | PAD models’ explanations

The quantitative analysis of this work consists in comparing
the explanations obtained for the two types of samples (bona

fide or presentation attack) and taking into account the
different evaluation frameworks (One‐Attack or Unseen‐
Attack). Bona fide images are always present in the training and
testing of any framework. Thus, the bona fide samples can be
tested and an explanation is produced in any framework, One‐
Attack#i or Unseen‐Attack#i.

The presentation attack samples belong to a specific
type of attack. Considering the One‐Attack framework's
evaluation, an attack sample of type #i can only be tested
for the respective OneAttack#i. It is not meaningful to
test this sample with the models of Attack#j (with j
6 = i) because then, this would be an Unseen‐Attack#i
scenario.

F I GURE 2 Explanations for correctly classified bona fide samples (TN) for One‐Attack and Unseen‐Attack: #1, 3, 5 (from [11])

F I GURE 3 Explanations for correctly classified presentation attack samples (true positives) for One‐Attack and Unseen‐Attack: #1, #4, #5 and #7
(from [11])
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Let I = {I1,...,In} and Exi ¼ fExi1 ;⋯;Exin g be a set of
images and the respective set of explanations. For each
image Ik (for k = 1,...,n) there is a corresponding expla-
nation Exik obtained, as will be described in section 5.2.
Note that x = o or x = u whether the explanation refers
to a classification result within the framework One‐Attack
or Unseen‐Attack, respectively, and i = 1,...,7 is the type
of attack that defines the model used for testing. Thus,
each explanation is obtained with a specific model deter-
mined by the evaluation framework and the attack used in
testing.

5.2 | Semantic representation of
explanations

As previously pointed out, this work aims to measure the
variability of the explanations for both bona fide and presen-
tation attack samples in the two different evaluation frame-
works. To do this, one needs to define a suitable representation
of the explanations produced such that it is possible to quantify
how much the two explanations differ from each other. The
comparison made and the differences measured are in a se-
mantic context. An illustrative example of how the approach
used to perform a quantitative comparison between the ex-
planations is depicted in Figure 4.

The type of explanations considered here are the same
as those considered in the authors’ earlier work [11].
Thus, the explanations are generated by the Grad‐CAM
interpretability method [12], which highlights the regions
of the image that maximise the predicted class. Since
Grad‐CAM produces blobby and coarse explanations that
highlight the regions without preserving details, in this
work it was decided to multiply the saliency maps by the
image. Nonetheless, this space is still not ideal for image
comparison as this comparison would be highly impacted
by the spatial location of important features. To overcome
this issue, and inspired by what is being done in image
retrieval [49, 50] and concept‐based interpretability [51] to
find similar images, the learnt features computed by a pre‐
trained CNN were used as the space to measure the dis-
tance between two explanations. This follows the finding of
Zhang et al. [52] that the Euclidean distance in the acti-
vation space of final layers is an effective similarity metric.
Since this work uses face images instead of using a typical
ImageNet based pre‐training of a CNN, which is adapted
to natural images, a face‐specific network, FaceNet [53],
pre‐trained in the VGGFace2 dataset [54], was used for the
extraction of deep features. This deep convolutional neural
network was trained using a triplet loss. The main goal was
to optimise the embedding space and ensure that FaceNet
could learn a function that correctly maps the face images
to a compact Euclidean space where distances directly
correspond to a measure of facial similarity. To take
advantage of these FaceNet properties and to achieve
meaningful mappings of the Grad‐CAM explanations,
we start by multiplying the original image by its Grad‐CAM

explanation. We then input this resulting image into Face-
Net1 (pre‐trained on the VGGFace2 dataset). We then
extract the features generated in the second to last layer of
FaceNet. All the Euclidean distances reported in this work
are computed in this semantic space.

6 | METHODOLOGY FOR THE
QUANTITATIVE COMPARISON OF PAD
EXPLANATIONS FOR THE SAME
SAMPLE IN DIFFERENT EVALUATION
FRAMEWORKS

This section describes the study that addresses the property
which states that for a robust PAD model, ‘explanations for the
same sample should be similar whether or not the model is
trained to detect that specific attack (One‐Attack vs. Unseen‐
Attack).

Figure 5 illustrates the process of comparing the explana-
tions with respect to one bona fide image, Ik and the evaluation
framework x (either One or Unseen‐Attack) and fixing as
reference the explanation obtained by the model for the
Attack#i in both frameworks.

Figure 6 illustrates the process of comparing the explana-
tions regarding one presentation attack image Ik of type
Attack#i. In this case, the comparison is made by fixing as
reference the explanation of the result of the classification in the
One‐Attack framework obtained by the model for the Attack#i;
thus, the evaluation framework is x = o. As mentioned before,
this is done in order to have a more stable benchmark for
comparison, since in the One‐Attack framework the model is
trained and tested with the same type of attack.

So, for each image Ik (either bona fide or attack), using the
evaluation framework x and the model regarding Attack#i, a
set of 6 values {dxjk: j ∈{1,...,7}\ i} is obtained by comparing
the explanation Exik (always Eoik in the PA case) with the
explanation Ekxj (for j ∈{1,...,7}\ i). These distance measure-
ments between explanations {dxjk}, obtained as described in
section 5.2, provide a quantitative measure of the variability of
the explanations produced by the different models (trained in

F I GURE 4 An illustrative example of the approach used to quantify
how much the two explanations differ from each other

1
Available at: https://github.com/timesler/facenetpytorch
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different conditions using different attack types) regarding the
same image. Averaging these values will provide the �d

xi
k values

for comparison.
Let the average of the {dxjk} values, �d

xi
k , be given by

Equation (1):

�d
xi
k ¼

1
6

X

j
dxjk ð1Þ

For the sake of clarity, Table 1 presents these distance
values and their correspondence to the images and
frameworks.

In the following sections, other measures will be obtained
from the values d�xik, obtained for each image Ik. These values
are unique for an attack sample and multiple (one for each i
∈{1,...,7}) for a bona fide sample.

6.1 | Image Average: bona fide and
presentation attack

The Image Average (Iµ) provides a quantitative measure of the
variability (across all models) of the explanations produced by
each model under the evaluation framework defined by xi (for
x = o or x = u and i = 1,...,7) regarding the image Ik. The Iµ
for the bona fide is given by Equation (2) and the Iµ for the
attacks is given by Equation (3).

Bona f ide : Iµxk ¼
1
7

X7

i¼1

�d
xi
k ð2Þ

Attack ðtype #iÞ : Iµxk ¼ �d
xi
k ð3Þ

6.2 | Attack Average: bona fide and
presentation attack

TheAttackAverage (Aµ)) provides a quantitativemeasure of the
variability (across all samples ) of the explanations produced by
the model under the evaluation framework defined by xi (for
x= o or x= u and i= 1,...,7). Consider the values �d

xi
k as defined in

Table 1 and n and m as the number of bona fide and attack
samples, respectively. The Aµ for the bona fide is given by
Equation (4) and theAµ for the attacks is given by Equation (5).

Bona f ide : Auxi ¼
1
n

Xn

i¼1

�d
xi
k ; f or i¼ 1;…;7 ð4Þ

Attack ðIktype #iÞ : Aµxi ¼
1
m

Xm

i¼1

�d
xi
k ; f or i¼ 1;…;7 ð5Þ

7 | METHODOLOGY FOR INTER‐CLASS
COMPARISON IN UNSEEN‐ATTACK
EVALUATION: BONA FIDE VS
PRESENTATION ATTACK

This section describes the study to investigate the inter‐class
comparison of explanations obtained using the models in the
Unseen‐Attack framework. In other words, the variability of
the explanations between the bona fide and presentation
attack samples is investigated.

To achieve the desired goal, the explanations obtained
from the classification of each image will be compared in a
pairwise manner with the explanations of the different models
trained in the Unseen‐Attack framework. This comparison is
performed for all images within each class.

By using the Unseen‐Attack models it is possible to test the
robustness of the models to the variability in the attacks present
in the training and testing steps. Recall that a model resulting
fromUnseen‐Attack#i is trainedwith attacks j for j∈{1,...,7}\ i.

Figure 7 illustrates the process of obtaining the comparison
of all explanations of one bona fide image Ik. It shows one
example of how to obtain the pairwise distances Dk given by
Dk = {djhk : djhk = d(Ekuj, Ekuh), with j,h ∈{1,...,7} and j
6 = h}. Then the values in Dk are averaged and d�k is obtained

F I GURE 5 Comparison of explanations for bona fide samples, image
Ik, evaluation framework x and fixing Attack#i

F I GURE 6 Comparison of explanations for the presentation attack
sample, image Ik, evaluation framework x and fixing Attack#i

TABLE 1 Average values obtained from the comparison of
explanations for different classes and evaluations frameworks (BF stands
for bona fide; PA for presentation attack)

Class Framework Comparisons

BF One‐Aattack f�d
xi
k : �d

xi
k f or i¼ 1;…; 7g

Unseen‐Attack f�d
xi
k : �d

xi
k f or i¼ 1;…; 7g

PA (type #i) One‐Attack �d
xi
k

Unseen‐Attack �d
xi
k
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for image Ik. A global value is obtained averaging all these
values, d�BF, as given by Equation (6):

�dBF ¼
1
n

X

k

�dk ð6Þ

for the bona fide images Ik (k = 1,...,n).
Figure 8 shows the process of obtaining the comparison

between the explanations of one presentation attack image Ik
(of the type Attack#i) obtained for the Unseen‐Attack#j
models for j ∈{1,...,7}\ i. It shows one example, regarding
image Ik of type Attack#i, of how to obtain the pairwise
distances Dk ¼ fd

jh
k : djhk ¼ dðEujk ;E

uh
k Þ;with j; h ∈ f1;…;7g

nigand j6¼ h}. The values in Dk are averaged and d�k is ob-
tained for image Ik. A global value is obtained averaging all
these values, d�PA, as given by Equation (7):

�dPA ¼
1
m

X

k

�dk ð7Þ

for the presentation attack images Ik (k = 1,...,m) of type #i.

8 | METHODOLOGY FOR
COMPARISON OF PAD EXPLANATIONS
FOR SAME‐CLASS DIFFERENT SAMPLES

This section addresses the property which claims that for a
robust PAD model ‘explanations should be similar for different
samples with the same label’. So, on the one hand it is a goal to
investigate the coherence of explanations for the bona fide
samples. On the other hand, it is a goal to understand how
much the explanations vary for presentation attack samples.
This analysis can be done by observing how much the expla-
nations for the models’ decisions are affected by variations in
the types of presentation attacks known in the learning phase.
The comparison is done by comparing features extracted from
the explanations and not in a pixel to pixel manner, as
described in section 5.2, making it possible to compare the
explanations obtained for different samples.

9 | EXPERIMENTAL SETUP

9.1 | Data and pre‐processing

The data used was drawn from the ROSE‐Youtu Face Liveness
Detection Dataset [55]. This dataset is composed of 3497
videos from 20 subjects, including ‘genuine’ and ‘attack’ videos.
Table 2 details the attack types and the total number of frames
for each attack. From each video, frames were extracted every
5s and faces were detected using an MTCNN [56]. Face re-
gions were cropped, resized to 224 � 224, and normalised to
[0,1]. The samples from subjects {2,3,4,5,6} were reserved for
testing, while the data from the remaining 15 subjects were
used for training and validation.

9.2 | Evaluation metrics

The metrics used for the evaluation of PAD models are as
follows: the Bona fide Presentation Classification Error Rate
(BPCER) (the proportion of bona fide presentations errone-
ously classified as attacks); and the Attack Presentation Clas-
sification Error Rate (APCER) (the proportion of presentation
attack wrongly classified as bona fide) [13]. The Equal Error
Rate (EER) is the error at the operation point where the
APCER and BPCER take the same value.

9.3 | Implementation details

Using the data previously described, the PAD end‐to‐end
model was trained using the Adam optimiser with an initial
learning rate of 0.0001 for a maximum of 150 epochs and
batch size 8. Early stopping, dropout, and data augmentation
were used as detailed in [11]. All the experiments were per-
formed using the Grad‐CAM implementation of the Keras
Visualization Toolkit [57]. In the saliency maps, each pixel
takes a colour from blue to yellow, corresponding to the
increasing activation/importance of the pixel.

10 | RESULTS AND DISCUSSION

10.1 | Performance of the face PAD method

Although the focus of this work is on interpreting the de-
cisions of the face PAD model rather than its performance,
one should not attempt to interpret a model that lacks PAD
capabilities in the first place. Table 3 presents the performance
results for One‐Attack and Unseen‐Attack frameworks.

F I GURE 7 Pairwise comparison of explanations produced by the
Unseen‐Attack models for a bona fide sample, Ik

F I GURE 8 Pairwise comparison of explanations produced by the
Unseen‐Attack models for the attack sample, Ik, of type #i
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10.2 | Comparison of explanations for the
same sample in different evaluation
frameworks: Image Average (Iµ)

The results presented and discussed in this section come
from the quantitative analysis detailed in Section 6. It is an
objective of this work to investigate the behaviour of the
models when the diversity of attacks in the training data
varies. In an ideal scenario of a robust PAD method, the
explanations for the same bona fide sample (with bona fide
predicted label) should be similar whether or not the model is
trained to detect a specific attack. However, in reality the
models are often sensitive to variations in the training data.
The same is true for the presentation attack samples, where
the presence or absence of some attacks affects the behaviour
of the models.

Figure 9 shows themean and standard deviation of the values
of Image Average (Iµ) values for the experiments described in
subsection 6.1. The top image represents the mean value of the
Image Average values (Av(Iµ)) and the bottom image represents
the standard deviation associated with the mean value of the
Image Average (StD(Iµ)), for the two types of samples and in the
two evaluation frameworks: One‐Attack and Unseen‐Attack.

From the analysis of Figure 9 several conclusions can be
drawn.

First, the intra‐class variability is higher in the context of
One‐Attack than in the context of Unseen‐Attack, as indicated
by a higher Av(Iµ) value, regardless of whether bona fide or
presentation attack samples are involved. Moreover, the Iµ
values within One‐Attack show higher variability than within
Unseen‐Attack for bona fide, which can be inferred by the
higher StD(Iµ) value of the One‐Attack framework. This
suggests that in the Unseen‐Attack, the model can better
generalise the bona fide samples’ knowledge because it sees
more attack variety during training. For the attack, the intra‐
class comparison (bona fide and presentation attack) in both
frameworks One‐Attack and Unseen‐Attack. For the attack
samples, the variability among the different types of One‐
Attack is also higher than the variability of the different

types of One‐Attack against the different types of Unseen‐
Attacks. This suggests that even for the presentation attack
samples, the models become more robust when seeing a bigger
diversity of attacks during training.

TABLE 2 Types of presentation attack instruments in the ROSE
Youtu DB (N.I. stands for ‘number of images’, i.e. frames extracted from
the videos)

Attack Types of presentation Attack Instruments N.I.

‐ Genuine (bonafide) 2794

#1 Still printed paper 1136

#2 Quivering printed paper 1188

#3 Video of a Lenovo LCD display 923

#4 Video of a Mac LCD display 1113

#5 Paper mask with two eyes and mouth cropped out 608

#6 Paper mask without cropping 1194

#7 Paper mask with the upper part cut in the middle 1162

TABLE 3 PAD performance of the models for One‐Attack and
Unseen‐Attack evaluation frameworks (EER, APCER, and BPCER in %;
APCER and BPCER calculated for a threshold of 0.5) (from [11])

Attack
One‐Attack
EER APCER BPCER

Unseen‐Attack
EER APCER BPCER

1 7.29 12.15 3.06 5.90 6.94 4.90

2 3.62 6.67 1.35 5.55 3.00 10.65

3 2.79 8.37 0.12 10.38 26.29 4.28

4 12.66 30.38 1.84 25.34 45.73 3.92

5 1.61 1.61 1.59 4.84 3.55 7.10

6 4.46 5.10 1.10 10.19 12.74 7.71

7 0.73 5.23 0.00 15.49 34.31 7.71

Notes: Attack Presentation Classification Error Rate (APCER) (the proportion of
presentation attack wrongly classified as bona fide) [13]. The Equal Error Rate (EER) is
the error at the operation point where the APCER and BPCER take the same value.
Abbreviations: APCER, Attack Presentation Classification Error Rate; BPCER, Bona
fide Presentation Classification Error Rate; EER, Equal Error Rate; PAD, presentation
attack detection.

F I GURE 9 Image average mean and standard deviation (StD) for the
intraclass comparison (bona fide and presentation attack)in both
frameworks One‐attack and Unseen‐Attack
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Figure 10 and Figure 11 are showing an example of an
attack sample image that has a comparatively higher Av(Iµ)
value in the One‐Attack framework and a lower value
regarding the Unseen‐Attack framework. These results rein-
force our intuition that a model that is trained with more than
one example of a presentation attack ends up learning com-
mon patterns that may contribute to a more robust model,
with better generalisation ability.

10.3 | Comparison of explanations for the
same sample in different evaluation
frameworks: Attack Average (Aµ)

The results presented and discussed in this section were
obtained from the quantitative analysis detailed in
section 6.

Figure 12 and Figure 13 show the Mean of the Attack
Average values (Av(Aµ)), as described in section 6.2, for the
bona fide and presentation attack samples, respectively, for
both One‐Attack and Unseen‐Attack frameworks.

A comparison on the basis of Attack Average shows a
higher variability for One‐Attack, suggesting once again that
a training setting that integrates more than one attack may
promote the learning of more coherent features for the bona
fide class (Figure 12). The same is true for the presentation
attack samples (Figure 13), as the mean distance for the
Unseen‐Attack framework is smaller than the one for the
One‐Attack framework. Even though the attacks contain
intrinsic specificity, the models used to detect them seem to
benefit from the integration of more attacks during the
training phase. However, it is interesting to note the vari-
ability observed for the presentation attack samples’ case
across the different attacks in the Unseen‐Attack framework:

F I GURE 1 0 Comparison of explanations in intra‐class One‐Attack: a PA sample of type provides a high Image Average value (obtained when the One‐
Attack#5 is compared against the One‐Attacks {#1,...,#7}\ #5)

F I GURE 1 1 Comparison of explanations in intra‐class Unseen‐Attack: a PA sample of type provides a low Image Average value (obtained when the One‐
Attack#5 is compared against the Unseen‐Attacks {#1,...,#7}\ #5)
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despite the fact that, in general, the values are smaller than
those for the One‐Attack (and therefore the models are
learning more and becoming more robust to unknown at-
tacks), some specific attacks have much lower values than
others. This may mean that the differences in the types of
attacks seen in training originate models that are much more
sensitive to the unseen data in the testing step than others. In
particular, in Figure 13: (i) the Unseen‐Attack#5 (consisting
of paper masks with eyes and mouth cut out) has a lower
value, which can be explained by the fact that in this
framework, the model has seen in training many varieties of
print attacks (like complete photos, complete paper masks,
and half‐paper masks); therefore it will generalise more easily;
(ii) at the other extreme, the Unseen‐Attack#7 (consisting of
upper half‐paper masks) has a higher value, which can be
explained by the fact that these samples combine skin and
paper in the facial area; therefore they are more difficult for
the model to generalise from the training samples.

10.4 | Inter‐class comparison: bona fide
versus presentation attack analysis

The results presented and discussed in this section were ob-
tained from the quantitative analysis detailed in section 7.

For the bona fide samples, the value d�BF = 0.54 is obtained
by averaging the value, d�k, of all bona fide images, Ik (with
k = 1,…,n), which is obtained from a pairwise comparison of
the explanations of all Unseen‐Attack models. The associated
standard deviation is 0.13.

Regarding the presentation attack samples, the value
d�PA = 0.52 is obtained by averaging the value, d�k, of all attack
images, Ik, (with k = 1,…,m) which is obtained from a pairwise
comparison of the explanations of Unseen‐Attack#j for j
∈{1,...,7}\ i models. The associated standard deviation is 0.14.

These values are very close and the standard deviation
values are not only high but also similar in both cases. The
similarity of the values does not allow us to draw a comparative
conclusion. Nevertheless, it is worth investigating and trying to
interpret the meaning of these absolute values.

Figure 14 and Figure 15 depict examples of images whose
pairwise distance values, d�k, are close to the calculated mean
values, d�BF and d�PA. By visually inspecting these sets of ex-
planations, it is observed that there is in fact a wide variability
between explanations (e.g., in Figure 14 Unseen‐Attacks#4,#6
in comparison to #2,#3,#5; and in Figure 15 Unseen‐At-
tacks#3,#4 in comparison to #1,#6).

However, despite the observed variability, in both types of
samples there are always certain zones of images that are used
by the models to make their decisions. This could be evidence
for the fact that, despite the variety of training conditions and
the resulting noise, the model is always able to pinpoint some
regions of the face that correspond to the real underlying in-
formation on the bona fide and presentation attack labels. This
idea is verified when the pairwise distance is above average
(Figure 16 and Figure 17).

Obviously, these rationales are based on subjective visual
evaluations, but this is a result of the current unavailability of a
ground truth for a goodormeaningful explanation.These are still
muddy grounds that require further research and a combination
of interpretability methods with human expert knowledge.

10.5 | Intra‐class analysis

The results presented and discussed in this section were ob-
tained from the quantitative analysis detailed in section 8.

In Figure 18, we observe that the One‐Attack
framework—both for bona fide and presentation attack
samples—leads to higher overall variability. This confirms
that a model with a great variety of attacks in the training
step will be more consistent in the regions used for the
model's decisions.

11 | CONCLUSIONS AND FUTURE
WORK

In this work, an analysis of the explanations produced for
different models in face PAD was performed. Both

F I GURE 1 2 Bona fide Attack Average mean for One‐Attack and
Unseen‐Attack (i = 1,...,7) and respective mean values

F I GURE 1 3 Presentation Attack Average mean for One‐Attack and
Unseen‐Attack (i = 1,...,7) and respective mean values
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F I GURE 1 4 Explanations for bona fide samples with pairwise distance close to the obtained average (d�BF = 0.54)

F I GURE 1 5 Explanations for presentation attack sample of type #2 with with pairwise distance close to the obtained average (d�PA = 0.52)

F I GURE 1 6 Explanations for bona fide samples with pairwise distance above the obtained average (d�BF = 0.54)
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One‐Attack and Unseen‐Attack training frameworks were
considered to analyse the explanations’ variability for both
classes by first performing an intra‐class study and, afterwards,
an inter‐class investigation.

Regarding the intra‐class variability of the explanations, we
were able to demonstrate that the One‐Attack framework led

to a higher mean distance value for both bona fide and
presentation attack samples. Therefore, it is possible to
conclude, from the point of view of interpretability, that the
presence of more attacks during training has a positive effect
on the generalisation and robustness of the models, confirming
our initial intuition. We also examined how the variability of

F I GURE 1 7 Explanations for presentation attack sample of type #7 with pairwise distance above the obtained average (d�PA = 0.52)

F I GURE 1 8 Bona fide and Presentation Attack
Intra‐class comparison of mean and std values of
One‐Attack and Unseen‐Attack (i = 1,...,7) and
respective overall mean/std values
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the explanations changed between the two different classes and
found that they exhibit similar levels of variability. In addition,
we analysed examples of both bona fide and presentation
attack samples, which are representative of the mean variability
distance, to get a sense of the intensity of the variability of the
explanation from one training setting to another.

This exploratory study confirms the need to establish new
approaches in biometrics that incorporate interpretability. There
is an urge to evaluate frameworks of explanations that allow the
assessment of their quality and comparison. Notably, in the
specific use case of PAD, what it means to be a ‘good’ expla-
nation is not even consensual. For example, a particular region
of the face may be relevant for the decision of the model in both
cases, whether it is classifying the sample as bona fide or attack.
As pointed out in the literature [41], through the xAI perspective
an explanation must describe how the system came to its
conclusion, and an ‘accurate’ explanation (whatever that means)
does not imply that a system provided the correct answer. Thus,
the open challenge is for the biometrics community to move
from the established ‘decision accuracy metrics’ to novel (not yet
developed) ‘performance metrics for explanations’. The present
work is one step forward in this path by performing a com-
parison of explanations for the same image using its semantic
representation in a space of embeddings where the euclidean
distance is an effective similarity metric.

Following the systematic analysis offered in this work, we
believe that improving objectivity by combining subjective but
knowledgeable opinions from several experts is essential to
consolidate interpretability and thus enable deeper and more
meaningful performance analysis on presentation attack
detection. In addition, further efforts should be made to
investigate the impact of the explanations on the training itself,
as a regularisation method to guide models through the
learning of meaningful features.
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