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Abstract. The standard configuration’s set of twelve electrocardiogram (ECG) leads is
optimal for medical diagnosis of diverse cardiac conditions. However, it requires ten
electrodes on the patient’s limbs and chest, which is uncomfortable and cumbersome.
Interlead conversion methods can reconstruct missing leads and enable more comfort-
able acquisitions that still allow for adequate diagnoses. This work contributes toward
this goal by studying interlead conversion using single-lead non-aligned input ECG seg-
ments, exploring three architectures based on the encoder-decoder structure. Despite the
significantly more challenging scenario, the proposed methodology was able to achieve
state-of-the-art results both on the PTB database and in cross-database tests.

1 Scientific Background
The electrocardiogram (ECG) is the measurement of electrical potentials that make

the heart contract and relax as intended. The morphology of the ECG signal depends
on the location of the electrodes used for acquisition: different electrode placement
results in different perspectives over the heart [1]. For medical purposes, the standard
configuration acquires the ECG over twelve leads for more information, but it requires
ten electrodes placed on the patient’s arms, legs, and chest. Using fewer electrodes
allows for more comfortable and inexpensive acquisitions, at the expense of certain
leads that could be ideal for a more accurate diagnosis of certain conditions.

To get the best of both worlds, researchers have proposed methods for the automatic
interlead conversion of ECG signals [2–6]. These transform short ECG segments to
mimic other perspectives, using acquired leads to reconstruct any leads that were not
recorded. However, these methods still present limited applicability, since they typically
require multiple leads as input. Even the most advanced methods [4,5], that only use one
input lead, still require the inputs to be single heartbeat segments aligned in time, which
makes them dependent on separate processes and, overall, less flexible and robust.

This paper presents a study on the feasibility of ECG interlead conversion using short
segments from just one lead without any kind of time alignment (blindly-segmented).
With such input, the proposed methodology based on an encoder-decoder structure is
trained to reconstruct other leads as faithfully as possible. This opens up new possibil-
ities for more comfortable ECG acquisition in clinical scenarios without giving up the
benefits of multi-lead recordings for medical diagnosis.

2 Methodology
2.1 General overview
The proposed methodology for interlead ECG conversion follows the encoder-

decoder structure typically used for deep image segmentation. The encoder receives
an input signal and processes it to create a compressed representation that retains rel-
evant information for the task at hand. The decoder receives this representation and
processes it so that the output matches the ground truth as closely as possible. Here,
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the input to the encoder is a short ECG segment of one lead (X) and the ground-truth
is the corresponding segment in a different lead (Y). Thus, the encoder is in charge of
selecting the information from X that is needed for Y, and the decoder will use that
information to reconstruct the corresponding lead Y signal.

2.2 Model architectures
The general encoder-decoder structure allows for diverse specific model architec-

tures. In this work, three architectures were implemented and compared, based on con-
volutional autoencoders (AE), U-Nets, and Label Refinement Networks (LRN):

• Convolutional Autoencoder (see Fig. 1(a)): This architecture receives an input
segment of lead X, which initially goes through a chain of three sequential blocks,
each with half the signal resolution of the previous block. Each block includes two
convolutional layers (each followed by batch normalisation and ReLU activation)
and ends with a max-pooling layer. Between the encoder and the decoder, two
convolutional layers compose the latent space or bottleneck block, which corre-
sponds to the maximum point of information compression. The decoder mirrors
the encoder, with three similar blocks composed of an upsampling layer and two
transposed convolutional layers. The last transposed convolutional layer outputs a
single-channel signal whose size corresponds to the input segment. Its activation
function is the hyperbolic tangent for an output signal with amplitudes in [−1, 1];

• U-Net (see Fig. 1(b)): The U-Net was proposed by Ronneberger et al. [7] as a
tool for biomedical image segmentation. In this case, it was used for interlead
conversion. The architecture is very similar to the autoencoder, however, the
feature maps from the encoder blocks are directly routed to the corresponding
decoder blocks through skip connections. This allows the model to propagate
context information from higher resolution between the encoder and the decoder;

• Label Refinement Network (see Fig. 1(c)): The Label Refinement Network
(LRN) was originally proposed by Islam et al. [8] for semantic image segmen-
tation. As implemented for interlead conversion in this work, its architecture is
identical to the aforementioned U-Net. The singularity of the LRN lies in the su-
pervision strategy: while the U-Net only uses the output of the last decoder block
in the reconstruction loss, the LRN computes the loss at the outputs of every de-
coder block. This results in supervision at several resolution levels, leading the
decoder to offer a coarse reconstruction right after the first block, which should
be gradually refined by the subsequent blocks for improved results at higher res-
olutions.

3 Experimental Setup
3.1 Data
The experiments conducted in this work used mainly the data provided in the PTB

database [9], available on Physionet [10]. The PTB database includes data from 16
channels, including all 12 standard leads, sampled at 1 kHz. It contains a total of 549
records from 290 individuals, with one to five records per subject. Recordings were
cropped into segments of 5 s (5000 samples). A second-order Butterworth bandpass
filter with cutoff frequencies fc = [1, 40] Hz was applied to each segment to remove
noise while retaining the most useful ECG information. The amplitudes of the n values
of each signal x were then min-max normalised to the interval [−1, 1]:

xn = 2× xn − xmin

xmax − xmin

− 1 (1)
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Figure 1: Structure of the implemented encoder-decoder architectures.

The data from PTB was divided into train and test sets, with approximately 63%, 7%
and 30% of the segments, respectively, for a total of 7086, 787, and 3509 ECG segments
for each set. For a more thorough and challenging evaluation, subjects are divided
between the train/validation and test sets: the latter had recordings from subjects 1 to 50
while the former had recordings from subjects 51 to 290.

The INCART database, also available on Physionet, was used to test the performance
of trained models on cross-database scenarios. This database contains 75 Holter record-
ings from 32 subjects undergoing tests for coronary artery diseases. Each record is 30
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minutes long and contains twelve standard leads sampled at 257 Hz. Recordings from
this database were resampled to 1 kHz and processed as described above for PTB.

3.2 Model training and evaluation
The models were trained using the l1-loss between the model outputs and the corre-

sponding ground-truth signals as the objective function. The Adam optimiser was used
with an initial learning rate of 1× 10−3, over a maximum of 500 epochs with batch size
64 and early stopping patience of 50 epochs.

To compare conversions with the corresponding ground-truth signals, this work used
the following metrics: the average and median Pearson correlation coefficient (r, used
in the majority of the related literature), the average RMSE, the average Structural Sim-
ilarity Index Measure (SSIM), and the average Dynamic Time Warping (DTW).

4 Results and Discussion
4.1 One-to-one lead conversion
To compare the selected architectures, the first experiment entailed the conversion

from lead II to lead I, two of the most used ECG leads for medical purposes (see Ta-
ble 1). According to most metrics, the U-net offers the best results. Its skip-connections
give it the capability to send more information (and at more resolution levels) from the
encoder to the decoders. The multi-resolution supervision of the LRN, expected to im-
prove overall performance, appears to excessively draw the model’s attention away from
the details, which ultimately harmed performance.

Table 1: Test results of one-to-one lead conversion.

Model r (avg.) r (median) DTW RMSE SSIM
Autoencoder 0.67 0.78 542.78 8.33 0.58
U-Net 0.69 0.78 579.25 8.89 0.65
LRN 0.65 0.75 562.43 8.80 0.63

4.2 One-to-many leads conversion
Not all leads can be converted equally: the correlation between leads depends on

their perspectives of the heart. While some leads (see Table 2), such as aVF or aVR are
highly (positively or negatively) correlated with lead II, aVL is almost orthogonal due
to their electrode placement. Hence, aVL would be much harder to convert from lead II
than any other lead.

Table 2: Average correlation between lead II signals and other leads.

I III aVR aVL aVF
r (avg.) 0.45 0.36 -0.71 0.01 0.77

This is verified in the results of multi-lead conversion using the U-net model (see
Table 3). Conversion from lead II to aVF consistently offers the best results, while
the conversions to lead III or aVL are overall the least successful. That is also visible
in the examples of Fig. 2 where the model is unable to capture the finer details of the
signals in lead III and lead aVL. Results also show that using an individual encoder
for each decoder instead of a common shared encoder enables achieving considerably
better results, aligned with those obtained in one-to-one conversion. This is because
the former allows the model to learn to encode the specific information needed for each
output lead instead of common representations.

4.3 Cross-database evaluation
Cross-database performance was evaluated using the previously trained U-net for

lead II to lead I conversion on the INCART database. The results (see Table 4) are



Proceedings of CIBB 2021 5

Table 3: Test results of the U-net used for multi-lead conversion, with a shared encoder or with one
encoder for each decoder.

Shared Encoder Individual Encoders
Lead r (avg.) r (median) DTW RMSE SSIM r (avg.) r (median) DTW RMSE SSIM

I 0.37 0.47 652.74 10.34 0.48 0.69 0.78 579.25 8.89 0.65
III 0.42 0.58 646.96 10.55 0.54 0.57 0.68 742.87 11.57 0.60

aVR -0.62 -0.75 942.31 16.76 0.15 0.91 0.95 341.35 5.38 0.78
aVL -0.62 -0.75 777.45 12.75 0.29 0.49 0.65 769.51 12.28 0.66
aVF 0.79 0.87 434.61 7.09 0.73 0.84 0.90 446.08 6.99 0.70

Lead III → r = 0.68

Lead aVL → r = 0.65 Lead aVF → r = 0.90

Lead aVR → r = 0.95

Figure 2: Examples of multi-lead conversions from lead II corresponding to the median r of the model
(ground-truth in blue, conversion in orange).

slightly worse than those with the PTB database, as expected since the models were
trained on PTB data and the INCART database is arguably more challenging regarding
noise and variability. Such results would likely improve with further signal preprocess-
ing. Nevertheless, in Figure 3, it is noticeable that the overall morphology of the signals
was mostly successfully converted even for the lowest r quartile.

Table 4: Cross-database test results for INCART lead II to lead I conversion.

r (avg.) r (median) DTW RMSE SSIM
0.56 0.61 732.55 11.15 0.56

5 Conclusion
This work implemented and compared the performance of three deep learning archi-

tectures for interlead conversion of ECG signals. Unlike the literature, this work focused
on the more challenging scenario of single-lead blindly-segmented ECG inputs. Despite
this, the proposed methodology based on a U-net achieved state-of-the-art results in one-
to-one and one-to-many experiments and promising results in cross-database scenarios.
Nevertheless, further efforts should be devoted to expanding this study to all twelve stan-
dard leads, to use other leads as input, to perform experiments in larger databases, and
to investigate the effect of medical conditions in the performance of ECG conversion.
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Quartile 1 → r = 0.40 Quartile 2 → r = 0.61

Quartile 3 → r = 0.80 Quartile 4 → r = 0.97

Figure 3: Cross-database results for example r quartiles (ground-truth in blue, conversion in orange).
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